## Many different uniformity numbers of Yorioka ideals

#### Diego A. Mejía diego.mejia@shizuoka.ac.jp

Shizuoka University

Joint work with Lukas Klausner

Axiomatic set theory and its applications Kyoto University RIMS November 8th, 2018

#### Notation

## • For $\sigma \in (2^{<\omega})^{\omega}$ , $[\sigma]_{\infty} := \{x \in 2^{\omega} : \exists^{\infty} i < \omega(\sigma(i) \subseteq x)\}$

3

## Notation

-

3

Image: A math a math

#### Notation

• For 
$$\sigma \in (2^{<\omega})^{\omega}$$
,  $[\sigma]_{\infty} := \{x \in 2^{\omega} : \exists^{\infty} i < \omega(\sigma(i) \subseteq x)\}$ 

2 
$$\operatorname{ht}_{\sigma}(i) = |\sigma(i)|$$

3

(日) (同) (三) (三)

#### Notation

• For 
$$\sigma \in (2^{<\omega})^{\omega}$$
,  $[\sigma]_{\infty} := \{x \in 2^{\omega} : \exists^{\infty} i < \omega(\sigma(i) \subseteq x)\}$ 

$$\textbf{③ For } g \in \omega^{\omega}, \ \mathcal{J}_g := \{X \subseteq 2^{\omega} : \exists \sigma (X \subseteq [\sigma]_{\infty} \text{ and } \operatorname{ht}_{\sigma} = g)\}$$

#### Definition (Yorioka 2002)

For  $f:\omega\to\omega$  increasing, define

$$\mathcal{I}_{f} := \bigcup \{ \mathcal{J}_{g} : g \gg f \}$$

where  $f \ll g$  iff g dominates  $\{f \circ id^n : n < \omega\}$   $(id^n(i) = i^n)$ .

3

(日) (周) (三) (三)

#### Notation

• For 
$$\sigma \in (2^{<\omega})^{\omega}$$
,  $[\sigma]_{\infty} := \{x \in 2^{\omega} : \exists^{\infty} i < \omega(\sigma(i) \subseteq x)\}$ 

$$\textbf{ S For } g \in \omega^{\omega}, \ \mathcal{J}_g := \{ X \subseteq 2^{\omega} : \exists \sigma (X \subseteq [\sigma]_{\infty} \text{ and } \operatorname{ht}_{\sigma} = g) \}$$

#### Definition (Yorioka 2002)

For  $f:\omega\to\omega$  increasing, define

$$\mathcal{I}_{f} := \bigcup \{ \mathcal{J}_{g} : g \gg f \}$$

where  $f \ll g$  iff g dominates  $\{f \circ id^n : n < \omega\}$   $(id^n(i) = i^n)$ .

Each  $\mathcal{I}_f$  is a  $\sigma$ -ideal and  $\mathcal{SN} \subseteq \mathcal{I}_f \subseteq \mathcal{N}$ .

3

(日) (周) (三) (三)

#### Theorem (Kamo & Osuga 2014)

If  $\kappa$  is an uncountable regular cardinal then there is a ccc poset forcing that  $\{\operatorname{cov}(\mathcal{I}_{f_{\alpha}}) : \alpha < \kappa\}$  is pairwise different for some  $\{f_{\alpha} : \alpha < \kappa\}$ .

- 4 同 6 4 日 6 4 日 6

### Theorem (Kamo & Osuga 2014)

If  $\kappa$  is an uncountable regular cardinal then there is a ccc poset forcing that  $\{\operatorname{cov}(\mathcal{I}_{f_{\alpha}}) : \alpha < \kappa\}$  is pairwise different for some  $\{f_{\alpha} : \alpha < \kappa\}$ .

## Corollary (Weakly inacc.)

It is consistent that c-many  $cov(\mathcal{I}_f)$  are pairwise different.

## Theorem (Kamo & Osuga 2014)

If  $\kappa$  is an uncountable regular cardinal then there is a ccc poset forcing that  $\{cov(\mathcal{I}_{f_{\alpha}}) : \alpha < \kappa\}$  is pairwise different for some  $\{f_{\alpha} : \alpha < \kappa\}$ .

## Corollary (Weakly inacc.)

It is consistent that c-many  $cov(\mathcal{I}_f)$  are pairwise different.

#### Problem

Is it consistent that there are infinitely many

- $\operatorname{add}(\mathcal{I}_f)$ ?
- $on (\mathcal{I}_f)?$
- $of(\mathcal{I}_f)?$

For 
$$b: \omega \to (\omega + 1) \smallsetminus \{0\}$$
 and  $h: \omega \to \omega$  define  
 $\square b := \prod_{i < \omega} b(i)$ .

For 
$$b: \omega \to (\omega + 1) \setminus \{0\}$$
 and  $h: \omega \to \omega$  define  

$$\prod b := \prod_{i < \omega} b(i).$$

$$\mathcal{S}(b,h) := \{\varphi: \omega \to [\omega]^{<\aleph_0} : \forall i(\varphi(i) \subseteq b(i) \text{ and } |\varphi(i)| \le h(i))\}.$$

For 
$$b: \omega \to (\omega + 1) \setminus \{0\}$$
 and  $h: \omega \to \omega$  define  
a)  $\prod b := \prod_{i < \omega} b(i).$   
a)  $\mathcal{S}(b,h) := \{\varphi: \omega \to [\omega]^{<\aleph_0} : \forall i(\varphi(i) \subseteq b(i) \text{ and } |\varphi(i)| \le h(i))\}.$   
b)  $x \in \varphi$  iff  $\forall^{\infty}i < \omega(x(i) \in \varphi(i)).$ 

For 
$$b: \omega \to (\omega + 1) \setminus \{0\}$$
 and  $h: \omega \to \omega$  define  
a)  $\prod b := \prod_{i < \omega} b(i)$ .  
b)  $\mathcal{S}(b, h) := \{\varphi: \omega \to [\omega]^{<\aleph_0} : \forall i(\varphi(i) \subseteq b(i) \text{ and } |\varphi(i)| \le h(i))\}.$   
c)  $x \in^* \varphi$  iff  $\forall^{\infty}i < \omega(x(i) \in \varphi(i))$ .  
c)  $x \in^{\infty} \varphi$  iff  $\exists^{\infty}i < \omega(x(i) \in \varphi(i))$ .

For 
$$b: \omega \to (\omega + 1) \setminus \{0\}$$
 and  $h: \omega \to \omega$  define  
**a**  $\prod b := \prod_{i < \omega} b(i)$ .  
**a**  $S(b, h) := \{\varphi: \omega \to [\omega]^{<\aleph_0} : \forall i(\varphi(i) \subseteq b(i) \text{ and } |\varphi(i)| \le h(i))\}.$   
**a**  $x \in \varphi$  iff  $\forall^{\infty}i < \omega(x(i) \in \varphi(i))$ .  
**b**  $x \in \varphi$  iff  $\exists^{\infty}i < \omega(x(i) \in \varphi(i))$ .

$$\mathfrak{b}_{b,h}^{\mathrm{Lc}} := \min\{|F| : F \subseteq \prod b, \neg \exists \varphi \in \mathcal{S}(b,h) \forall x \in F(x \in^* \varphi)\}$$

For 
$$b: \omega \to (\omega + 1) \setminus \{0\}$$
 and  $h: \omega \to \omega$  define  
**a**  $\prod b := \prod_{i < \omega} b(i)$ .  
**a**  $S(b, h) := \{\varphi: \omega \to [\omega]^{<\aleph_0} : \forall i(\varphi(i) \subseteq b(i) \text{ and } |\varphi(i)| \le h(i))\}.$   
**a**  $x \in \varphi$  iff  $\forall^{\infty}i < \omega(x(i) \in \varphi(i))$ .  
**a**  $x \in \varphi$  iff  $\exists^{\infty}i < \omega(x(i) \in \varphi(i))$ .

$$b_{b,h}^{\mathrm{Lc}} := \min\{|F| : F \subseteq \prod b, \neg \exists \varphi \in \mathcal{S}(b,h) \forall x \in F(x \in^* \varphi)\} \\ b_{b,h}^{\mathrm{Lc}} := \min\{|D| : D \subseteq \mathcal{S}(b,h), \forall x \in \prod b \exists \varphi \in D(x \in^* \varphi)\}$$

For 
$$b: \omega \to (\omega + 1) \setminus \{0\}$$
 and  $h: \omega \to \omega$  define  
**a**  $\prod b := \prod_{i < \omega} b(i)$ .  
**a**  $S(b, h) := \{\varphi: \omega \to [\omega]^{<\aleph_0} : \forall i(\varphi(i) \subseteq b(i) \text{ and } |\varphi(i)| \le h(i))\}.$   
**a**  $x \in \varphi$  iff  $\forall^{\infty}i < \omega(x(i) \in \varphi(i))$ .  
**a**  $x \in \varphi$  iff  $\exists^{\infty}i < \omega(x(i) \in \varphi(i))$ .

$$b_{b,h}^{Lc} := \min\{|F| : F \subseteq \prod b, \neg \exists \varphi \in \mathcal{S}(b,h) \forall x \in F(x \in^* \varphi)\}$$
  
$$b_{b,h}^{Lc} := \min\{|D| : D \subseteq \mathcal{S}(b,h), \forall x \in \prod b \exists \varphi \in D(x \in^* \varphi)\}$$
  
$$b_{b,h}^{aLc} := \min\{|S| : S \subseteq \mathcal{S}(b,h), \forall x \in \prod b \exists \varphi \in S(x \in^\infty \varphi)\}$$

Diego A. Mejía (Shizuoka University)

For 
$$b: \omega \to (\omega + 1) \setminus \{0\}$$
 and  $h: \omega \to \omega$  define  
**a**  $\prod b := \prod_{i < \omega} b(i)$ .  
**a**  $S(b, h) := \{\varphi: \omega \to [\omega]^{<\aleph_0} : \forall i(\varphi(i) \subseteq b(i) \text{ and } |\varphi(i)| \le h(i))\}.$   
**a**  $x \in \varphi$  iff  $\forall^{\infty}i < \omega(x(i) \in \varphi(i))$ .  
**a**  $x \in \varphi$  iff  $\exists^{\infty}i < \omega(x(i) \in \varphi(i))$ .

$$\begin{split} b_{b,h}^{\mathrm{Lc}} &:= \min\{|F| : F \subseteq \prod b, \ \neg \exists \varphi \in \mathcal{S}(b,h) \forall x \in F(x \in^* \varphi)\} \\ \mathfrak{d}_{b,h}^{\mathrm{Lc}} &:= \min\{|D| : D \subseteq \mathcal{S}(b,h), \ \forall x \in \prod b \exists \varphi \in D(x \in^* \varphi)\} \\ \mathfrak{b}_{b,h}^{\mathrm{aLc}} &:= \min\{|S| : S \subseteq \mathcal{S}(b,h), \ \forall x \in \prod b \exists \varphi \in \mathcal{S}(x \in^\infty \varphi)\} \\ \mathfrak{d}_{b,h}^{\mathrm{aLc}} &:= \min\{|E| : E \subseteq \prod b, \ \neg \exists \varphi \in \mathcal{S}(b,h) \forall x \in E(x \in^\infty \varphi)\} \end{split}$$

• If 
$$h \to \infty$$
 then  $\mathfrak{b}_{\omega,h}^{\mathrm{Lc}} = \mathrm{add}(\mathcal{N})$  and  $\mathfrak{d}_{\omega,h}^{\mathrm{Lc}} = \mathrm{cof}(\mathcal{N})$ .

э

Image: A match a ma

In the case  $b \in \omega^{\omega}$ ,

#### Theorem (Goldstern & Shelah 1993)

It is consistent that there are uncountable many pairwise different  $\vartheta_{b,h}^{Lc}$ .

・日本 ・日本 ・日本

In the case  $b \in \omega^{\omega}$ ,

### Theorem (Goldstern & Shelah 1993)

It is consistent that there are uncountable many pairwise different  $\vartheta_{b,h}^{Lc}$ .

## Theorem (Kellner & Shelah 2012)

It is consistent that there are c-many pairwise different  $\mathfrak{b}_{b,h}^{\mathrm{aLc}} = \mathfrak{d}_{b,h}^{\mathrm{Lc}}$ .

イロト 人間ト イヨト イヨト

### Theorem (Brendle & M. 2014)

If  $\kappa$  is an uncountable regular cardinal, then there is a ccc poset forcing that  $\kappa$ -many  $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  are pairwise different.

### Theorem (Brendle & M. 2014)

If  $\kappa$  is an uncountable regular cardinal, then there is a ccc poset forcing that  $\kappa$ -many  $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  are pairwise different.

### Corollary (Weakly inacc.)

It is consistent that  $\mathfrak{c}$ -many  $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  are pairwise different.

### Theorem (Brendle & M. 2014)

If  $\kappa$  is an uncountable regular cardinal, then there is a ccc poset forcing that  $\kappa$ -many  $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  are pairwise different.

### Corollary (Weakly inacc.)

It is consistent that  $\mathfrak{c}$ -many  $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  are pairwise different.

#### Problem

Is it consistent that there are infinitely many pairwise different  $\partial_{b,h}^{aLc}$ ?

#### Lemma (Kamo & Osuga 2014)

If  $c \geq 2$  and  $\forall^{\infty} k(\sum_{i \leq k} \log_2 c(i) \leq g(k))$  then  $\mathfrak{b}_{c,1}^{\mathrm{aLc}} \leq \operatorname{cov}(\mathcal{J}_g)$  and  $\operatorname{non}(\mathcal{J}_g) \leq \mathfrak{d}_{c,1}^{\mathrm{aLc}}$ .

(人間) トイヨト イヨト ニヨ

#### Lemma (Kamo & Osuga 2014)

If  $c \geq^* 2$  and  $\forall^{\infty} k(\sum_{i \leq k} \log_2 c(i) \leq g(k))$  then  $\mathfrak{b}_{c,1}^{\mathrm{aLc}} \leq \operatorname{cov}(\mathcal{J}_g)$  and  $\operatorname{non}(\mathcal{J}_g) \leq \mathfrak{d}_{c,1}^{\mathrm{aLc}}$ .

#### Lemma (Kamo & Osuga 2014)

If g is monotonically increasing and  $\forall^{\infty} k \left( 2^{g\left(\sum_{i \leq k} h(i) - 1\right)} \leq c(k) \right)$  then  $\operatorname{cov}(\mathcal{J}_g) \leq \mathfrak{b}_{c,h}^{\operatorname{aLc}}$  and  $\mathfrak{d}_{c,h}^{\operatorname{aLc}} \leq \operatorname{non}(\mathcal{I}_g)$ .

(人間) とうき くうとう う

#### Lemma (Kamo & Osuga 2014)

If  $c \geq^* 2$  and  $\forall^{\infty} k(\sum_{i \leq k} \log_2 c(i) \leq g(k))$  then  $\mathfrak{b}_{c,1}^{\mathrm{aLc}} \leq \operatorname{cov}(\mathcal{J}_g)$  and  $\operatorname{non}(\mathcal{J}_g) \leq \mathfrak{d}_{c,1}^{\mathrm{aLc}}$ .

#### Lemma (Kamo & Osuga 2014)

If g is monotonically increasing and  $\forall^{\infty} k \left( 2^{g\left(\sum_{i \leq k} h(i) - 1\right)} \leq c(k) \right)$  then  $\operatorname{cov}(\mathcal{J}_g) \leq \mathfrak{b}_{c,h}^{\operatorname{aLc}}$  and  $\mathfrak{d}_{c,h}^{\operatorname{aLc}} \leq \operatorname{non}(\mathcal{I}_g)$ .

#### Remark

If  $f \ll g$  then  $\mathcal{J}_g \subseteq \mathcal{I}_f \subseteq \mathcal{J}_f$ , so  $\operatorname{cov}(\mathcal{J}_f) \leq \operatorname{cov}(\mathcal{I}_f) \leq \operatorname{cov}(\mathcal{J}_g)$  and  $\operatorname{non}(\mathcal{J}_g) \leq \operatorname{non}(\mathcal{I}_f) \leq \operatorname{non}(\mathcal{J}_f)$ .

イロト イポト イヨト イヨト 二日

Forcing to increase  $\mathfrak{d}_{c,h}^{\mathrm{aLc}}$ : assume  $1 \le h < c$  and  $\limsup_n h(n) = \infty$ .

Forcing to increase  $\mathfrak{d}_{c,h}^{\mathrm{aLc}}$ : assume  $1 \le h < c$  and  $\limsup_n h(n) = \infty$ .

#### Definition

• Fix  $n < \omega$ . Put  $\mathbf{K}(n) := \mathcal{P}([c(n)]^{\leq h(n)}) \setminus \{\emptyset\}.$ 

Forcing to increase  $\mathfrak{d}_{c,h}^{\mathrm{aLc}}$ : assume  $1 \le h < c$  and  $\limsup_n h(n) = \infty$ .

#### Definition

• Fix  $n < \omega$ . Put  $\mathbf{K}(n) := \mathcal{P}([c(n)]^{\leq h(n)}) \setminus \{\emptyset\}$ . For each  $M \in \mathbf{K}(n)$  define

$$\operatorname{nor}^{-}(M) := \max \{k < \omega : \forall a \in [c(n)]^{\leq k} \exists b \in M(a \subseteq b)\}.$$

< A > < 3

Forcing to increase  $\mathfrak{d}_{c,h}^{\mathrm{aLc}}$ : assume  $1 \le h < c$  and  $\limsup_n h(n) = \infty$ .

#### Definition

• Fix  $n < \omega$ . Put  $\mathbf{K}(n) := \mathcal{P}([c(n)]^{\leq h(n)}) \setminus \{\emptyset\}$ . For each  $M \in \mathbf{K}(n)$  define

$$\operatorname{nor}^{-}(M) := \max \{k < \omega : \forall a \in [c(n)]^{\leq k} \exists b \in M(a \subseteq b)\}.$$

E.g., 
$$\operatorname{nor}^{-}(M) \ge 1$$
 iff  $\bigcup M = [c(n)]^{\le h(n)}$ ;  $\operatorname{nor}^{-}(\{a\}) = 0$ .

Forcing to increase  $\mathfrak{d}_{c,h}^{\mathrm{aLc}}$ : assume  $1 \le h < c$  and  $\limsup_n h(n) = \infty$ .

#### Definition

2

• Fix  $n < \omega$ . Put  $\mathbf{K}(n) := \mathcal{P}([c(n)]^{\leq h(n)}) \setminus \{\emptyset\}$ . For each  $M \in \mathbf{K}(n)$  define

$$\operatorname{nor}^{-}(M) := \max \{k < \omega : \forall a \in [c(n)]^{\leq k} \exists b \in M(a \subseteq b)\}.$$

E.g., nor<sup>-</sup>(
$$M$$
)  $\geq$  1 iff  $\bigcup M = [c(n)]^{\leq h(n)}$ ; nor<sup>-</sup>({ $a$ }) = 0.  
Define

$$\mathbb{Q}^{-}_{c,h} := \left\{ p \in \prod_{n < \omega} \mathsf{K}(n) : \limsup_{n} \{ \operatorname{nor}^{-}(p(n)) \} = \infty \right\}$$

ordered by  $q \leq p$  iff  $\forall n(q(n) \subseteq p(n))$ .

(日) (同) (三) (三)

# $\mathbb{Q}_{c,h}^{-}$ adds a generic real $\varphi^* \in \mathcal{S}(c,h)$ such that $\forall x \in V \cap \prod c(x \in \varphi^*)$ .

## $\mathbb{Q}_{c,h}^{-}$ adds a generic real $\varphi^* \in \mathcal{S}(c,h)$ such that $\forall x \in V \cap \prod c(x \in \varphi^*)$ .

#### Lemma

 $\mathbb{Q}_{c,h}^{-}$  satisfies strong axiom A (hence it is proper and  $\omega^{\omega}$ -bounding) and it has continuum reading of names.

## $\mathbb{Q}_{c,h}^-$ adds a generic real $\varphi^* \in \mathcal{S}(c,h)$ such that $\forall x \in V \cap \prod c(x \in \varphi^*)$ .

#### Lemma

 $\mathbb{Q}_{c,h}^{-}$  satisfies strong axiom A (hence it is proper and  $\omega^{\omega}$ -bounding) and it has continuum reading of names.

#### Task

For which  $b, g \in \omega^{\omega}$  the cardinal  $\mathfrak{d}_{b,g}^{\mathrm{aLc}}$  is not modified by  $\mathbb{Q}_{c,h}^{-}$ ?

# Modify the norm

Fix 
$$d: \omega \to \omega \smallsetminus 2$$
 such that  $\lim_{n \to \infty} \frac{1}{d(n)} \log_{d(n)} h(n) = \infty$ .

#### Definition

• For  $M \in \mathbf{K}(n)$  define

$$\operatorname{nor}(M) := \frac{1}{d(n)} \log_{d(n)}(\operatorname{nor}^{-}(M) + 1).$$

-

3

# Modify the norm

Fix 
$$d: \omega \to \omega \smallsetminus 2$$
 such that  $\lim_{n \to \infty} \frac{1}{d(n)} \log_{d(n)} h(n) = \infty$ .

# Definition

• For  $M \in \mathbf{K}(n)$  define

$$\operatorname{nor}(M) := \frac{1}{d(n)} \log_{d(n)}(\operatorname{nor}^{-}(M) + 1).$$

**2** Define 
$$\mathbb{Q}_{c,h}^d := \left\{ p \in \prod_{n < \omega} \mathbf{K}(n) : \limsup_n \{\operatorname{nor}(p(n))\} = \infty \right\}$$
.

э

A (1) > A (2) > A

# Modify the norm

Fix 
$$d: \omega \to \omega \setminus 2$$
 such that  $\lim_{n \to \infty} \frac{1}{d(n)} \log_{d(n)} h(n) = \infty$ .

# Definition

• For  $M \in \mathbf{K}(n)$  define

$$\operatorname{nor}(M) := \frac{1}{d(n)} \log_{d(n)}(\operatorname{nor}^{-}(M) + 1).$$

2 Define 
$$\mathbb{Q}^d_{c,h} := \left\{ p \in \prod_{n < \omega} \mathsf{K}(n) : \limsup_n \{\operatorname{nor}(p(n))\} = \infty \right\}.$$

# Lemma (Bigness)

Whenever  $M \in \mathbf{K}(n)$  and  $f : M \to d(n)$ , there is some  $M^* \subseteq M$  such that  $f \upharpoonright M^*$  is constant and  $\operatorname{nor}(M^*) \ge \operatorname{nor}(M) - \frac{1}{d(n)}$ .

3

イロト イヨト イヨト

# The poset $\mathbb{Q}_{c,h}^d$ forces $\forall x \in V[G] \cap \prod a \exists \varphi \in V \cap S(a, e)(x \in \varphi)$ whenever

The poset  $\mathbb{Q}_{c,h}^d$  forces  $\forall x \in V[G] \cap \prod a \exists \varphi \in V \cap S(a, e)(x \in \varphi)$  whenever

•  $\forall^{\infty}k: \prod_{i < k} a(k) \le d(k), \prod_{i < k} c(k)^{h(k)} \le e(k)$ , and

The poset  $\mathbb{Q}_{c,h}^d$  forces  $\forall x \in V[G] \cap \prod a \exists \varphi \in V \cap S(a, e)(x \in \varphi)$  whenever

The poset  $\mathbb{Q}_{c,h}^d$  forces  $\forall x \in V[G] \cap \prod a \exists \varphi \in V \cap S(a, e)(x \in \varphi)$  whenever

• 
$$\forall^{\infty}k: \prod_{i < k} a(k) \le d(k), \prod_{i < k} c(k)^{h(k)} \le e(k), \text{ and}$$
  
•  $\lim_{k} \min\left\{\frac{c(k)^{h(k)}}{e(k)}, \frac{a(k)}{d(k)}\right\} = 0.$   
•  $\mathbb{O} \mathbb{Q}^{d}_{c,h}$  increases  $\mathfrak{d}^{\mathrm{aLc}}_{c,h}$  while preserving  $\mathfrak{d}^{\mathrm{Lc}}_{a,e}$ .

The poset  $\mathbb{Q}_{c,h}^d$  forces  $\forall x \in V[G] \cap \prod a \exists \varphi \in V \cap S(a, e)(x \in \varphi)$  whenever

• 
$$\forall^{\infty}k: \prod_{i < k} a(k) \le d(k), \prod_{i < k} c(k)^{h(k)} \le e(k), \text{ and}$$
  
•  $\lim_{k} \min\left\{\frac{c(k)^{h(k)}}{e(k)}, \frac{a(k)}{d(k)}\right\} = 0.$ 

So  $\mathbb{Q}_{c,h}^d$  increases  $\mathfrak{d}_{c,h}^{\mathrm{aLc}}$  while preserving  $\mathfrak{d}_{a,e}^{\mathrm{Lc}}$ .

#### Lemma

If 
$$\forall^{\infty}i$$
:  $b(i)^{g(i)} \leq a(i)$  and  $e(i) < \frac{b(i)}{g(i)}$ , then  $\mathfrak{b}_{a,e}^{\mathrm{Lc}} \leq \mathfrak{b}_{b,g}^{\mathrm{aLc}}$  and  $\mathfrak{d}_{b,g}^{\mathrm{aLc}} \leq \mathfrak{d}_{a,e}^{\mathrm{Lc}}$ .

★@>★ 御>★ 御> 二 酒

Assume CH. Let K be a set of cardinals,  $|K| \leq \aleph_1$ , such that  $\kappa^{\aleph_0} = \kappa$  for any  $\kappa \in K$ .

Assume CH. Let K be a set of cardinals,  $|K| \leq \aleph_1$ , such that  $\kappa^{\aleph_0} = \kappa$  for any  $\kappa \in K$ . Then there are functions  $\langle a_{\kappa}, c_{\kappa}, d_{\kappa}, f_{\kappa}, h_{\kappa} : \kappa \in K \rangle$  such that  $\mathfrak{d}_{c_{\kappa}, h_{\kappa}}^{\mathrm{aLc}} \leq \mathrm{non}(\mathcal{I}_{f_{\kappa}}) \leq \mathfrak{d}_{a_{\kappa}, d_{\kappa}}^{\mathrm{Lc}}$  for any  $\kappa \in K$ , and

Assume CH. Let K be a set of cardinals,  $|K| \leq \aleph_1$ , such that  $\kappa^{\aleph_0} = \kappa$  for any  $\kappa \in K$ . Then there are functions  $\langle a_{\kappa}, c_{\kappa}, d_{\kappa}, f_{\kappa}, h_{\kappa} : \kappa \in K \rangle$  such that  $\mathfrak{d}_{c_{\kappa},h_{\kappa}}^{\mathrm{aLc}} \leq \operatorname{non}(\mathcal{I}_{f_{\kappa}}) \leq \mathfrak{d}_{a_{\kappa},d_{\kappa}}^{\mathrm{Lc}}$  for any  $\kappa \in K$ , and  $\mathfrak{d}_{c_{\kappa},h_{\kappa}}^{\mathrm{aLc}} = \operatorname{non}(\mathcal{I}_{f_{\kappa}}) = \mathfrak{d}_{a_{\kappa},d_{\kappa}}^{\mathrm{Lc}} = \kappa$  for any  $\kappa \in K$ .

Assume CH. Let K be a set of cardinals,  $|K| \leq \aleph_1$ , such that  $\kappa^{\aleph_0} = \kappa$  for any  $\kappa \in K$ . Then there are functions  $\langle a_{\kappa}, c_{\kappa}, d_{\kappa}, f_{\kappa}, h_{\kappa} : \kappa \in K \rangle$  such that  $\mathfrak{d}_{c_{\kappa},h_{\kappa}}^{\mathrm{aLc}} \leq \mathrm{non}(\mathcal{I}_{f_{\kappa}}) \leq \mathfrak{d}_{a_{\kappa},d_{\kappa}}^{\mathrm{Lc}}$  for any  $\kappa \in K$ , and

e there is a proper ω<sup>ω</sup>-bounding ℵ<sub>2</sub>-cc poset Q forcing  $∂^{\text{aLc}}_{c_{\kappa},h_{\kappa}} = \operatorname{non}(\mathcal{I}_{f_{\kappa}}) = ∂^{\text{Lc}}_{a_{\kappa},d_{\kappa}} = \kappa \text{ for any } \kappa \in K.$ 

The poset  $\mathbb{Q}$  is the CS product of  $\langle \mathbb{Q}_i : i \in I \rangle$  where

Assume CH. Let K be a set of cardinals,  $|K| \leq \aleph_1$ , such that  $\kappa^{\aleph_0} = \kappa$  for any  $\kappa \in K$ . Then there are functions  $\langle a_{\kappa}, c_{\kappa}, d_{\kappa}, f_{\kappa}, h_{\kappa} : \kappa \in K \rangle$  such that

2 there is a proper 
$$\omega^{\omega}$$
-bounding  $\aleph_2$ -cc poset  $\mathbb{Q}$  forcing  $\vartheta_{c_{\kappa},h_{\kappa}}^{\mathrm{aLc}} = \mathrm{non}(\mathcal{I}_{f_{\kappa}}) = \vartheta_{a_{\kappa},d_{\kappa}}^{\mathrm{Lc}} = \kappa$  for any  $\kappa \in K$ .

The poset  $\mathbb{Q}$  is the CS product of  $\langle \mathbb{Q}_i : i \in I \rangle$  where

To construct  $\langle a_{\kappa}, c_{\kappa}, d_{\kappa}, f_{\kappa}, h_{\kappa} : \kappa \in K \rangle$ , we need to improve Kamo-Osuga's lemmas.

Image: Image:

To construct  $\langle a_{\kappa}, c_{\kappa}, d_{\kappa}, f_{\kappa}, h_{\kappa} : \kappa \in K \rangle$ , we need to improve Kamo-Osuga's lemmas.

#### Lemma

 $\mathfrak{b}_{b,g}^{\mathrm{aLc}} \leq \mathrm{cov}(\mathcal{I}_f)$  and  $\mathrm{non}(\mathcal{I}_f) \leq \mathfrak{d}_{b,g}^{\mathrm{aLc}}$  whenever

• 
$$\langle J_n : n < \omega \rangle$$
 is an interval partition of  $\omega$ ,  $|J_n| = g(n)$ ,

2 
$$f_{b,g}(k) := \sum_{i \le n} \log_2 b(i)$$
 when  $k \in J_n$ , and

• 
$$f_{b,g} \leq^* f \circ \mathrm{id}^m$$
 for some  $m \geq 1$ .

To construct  $\langle a_{\kappa}, c_{\kappa}, d_{\kappa}, f_{\kappa}, h_{\kappa} : \kappa \in K \rangle$ , we need to improve Kamo-Osuga's lemmas.

#### Lemma

 $\mathfrak{b}_{b,g}^{\mathrm{aLc}} \leq \mathrm{cov}(\mathcal{I}_f)$  and  $\mathrm{non}(\mathcal{I}_f) \leq \mathfrak{d}_{b,g}^{\mathrm{aLc}}$  whenever

•  $\langle J_n : n < \omega \rangle$  is an interval partition of  $\omega$ ,  $|J_n| = g(n)$ ,

2 
$$f_{b,g}(k) := \sum_{i \le n} \log_2 b(i)$$
 when  $k \in J_n$ , and

• 
$$f_{b,g} \leq^* f \circ \mathrm{id}^m$$
 for some  $m \geq 1$ .

#### Lemma

$$cov(\mathcal{I}_f) \leq \mathfrak{b}_{c,h}^{\mathrm{aLc}} \text{ and } \mathfrak{d}_{c,h}^{\mathrm{aLc}} \leq non(\mathcal{I}_f) \text{ whenever}$$

$$(I_n : n < \omega) \text{ is an interval partition of } \omega, |I_n| = h(n),$$

$$g_{c,h}(k) := \log_2 c(n) \text{ when } k \in I_n, \text{ and}$$

$$f \ll g_{c,h}.$$

Is it consistent that there are  $\mathfrak{c}\text{-many}$  pairwise different cardinals of the form



Is it consistent that there are  $\mathfrak{c}\text{-many}$  pairwise different cardinals of the form

- $\bigcirc \operatorname{non}(\mathcal{I}_f)?$
- **2**  $\mathfrak{d}_{b,h}^{\mathrm{aLc}}$ ?

- ×

Is it consistent that there are  $\mathfrak{c}\text{-many}$  pairwise different cardinals of the form

- $\bigcirc \operatorname{non}(\mathcal{I}_f)?$
- $2 \mathfrak{d}^{\mathrm{aLc}}_{b,h} ?$
- $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  (without large cardinals)?

∃ > <</p>

Is it consistent that there are  $\mathfrak{c}\text{-many}$  pairwise different cardinals of the form

- $\bigcirc \operatorname{non}(\mathcal{I}_f)?$
- $2 \mathfrak{d}^{\mathrm{aLc}}_{b,h} ?$
- $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  (without large cardinals)?
- $\operatorname{cov}(\mathcal{I}_f)$  (without large cardinals)?

Is it consistent that there are  $\mathfrak{c}\text{-many}$  pairwise different cardinals of the form

- $\bigcirc \operatorname{non}(\mathcal{I}_f)?$
- **2**  $\mathfrak{d}_{b,h}^{\mathrm{aLc}}$ ?
- $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  (without large cardinals)?
- $\operatorname{cov}(\mathcal{I}_f)$  (without large cardinals)?

# Question 2

Is it consistent that  $\operatorname{add}(\mathcal{I}_f) \neq \operatorname{add}(\mathcal{I}_g)$  for some f, g?

Is it consistent that there are  $\mathfrak{c}\text{-many}$  pairwise different cardinals of the form

- $0 \quad \operatorname{non}(\mathcal{I}_f)?$
- $\mathfrak{b}_{b,h}^{\mathrm{Lc}}$  (without large cardinals)?
- $\operatorname{cov}(\mathcal{I}_f)$  (without large cardinals)?

# Question 2

Is it consistent that  $\operatorname{add}(\mathcal{I}_f) \neq \operatorname{add}(\mathcal{I}_g)$  for some f, g? Same problem with cof.