Axiomatic set theory and its applications

Some applications of iterated ultrapowers in countably compact groups

Ulises Ariet RAMOS GARCÍA

National Autonomous University of Mexico, Morelia ariet@matmor.unam.mx

RIMS November 2018

1 / 18

 $\label{eq:continuous_section} \mbox{Joint with M. Hrušák, J. van Mill y S. Shelah.}$

Contenido

Motivation

2 Solution to Comfort's/van Douwen's problem

Given an ultrafilter p on ω , a sequence $\langle x_n \colon n \in \omega \rangle$ and a point x contained in a topological space X we say that $x = p\text{-}\lim x_n$ if $\{n \in \omega \colon x_n \in U\} \in p$ for every neighbourhood $U \subset X$ of x.

Definition

- X is compact if every open cover of X has a finite subcover
- X is p-compact if for every sequence $(x_n : n \in \omega) \subseteq X$ there is a point $x \in \lambda$ such that x = p-lim x_n .
- X is countably compact if every countable open cover of X has a finite subcover
 - iff every infinite set has an accumulation point.
- If for every sequence $(x_0, \alpha \in \omega) \subseteq X$ there is a point $x \in X$ and an ultrafillity ρ on ω such that $x = \rho$ -limits.
- ullet X is pseudo-compact if every continuous function $f:X o\mathbb{R}$ is bounded.

Given an ultrafilter p on ω , a sequence $\langle x_n \colon n \in \omega \rangle$ and a point x contained in a topological space X we say that $x = p\text{-lim}x_n$ if $\{n \in \omega \colon x_n \in U\} \in p$ for every neighbourhood $U \subseteq X$ of x.

Definition

- X is compact if every open cover of X has a finite subcover.
- X is p-compact if for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ such that x = p-lim x_n .
- X is countably compact if every countable open cover of X has a finite subcover.
 - iff every infinite set has an accumulation point. iff for every sequence $(x_n \colon n \in \omega) \subseteq X$ there is a point $x \in X$ and an ultrafilter p on ω such that x = p-lim x_n .
- X is pseudo-compact if every continuous function $f: X \to \mathbb{R}$ is bounded.

Given an ultrafilter p on ω , a sequence $\langle x_n \colon n \in \omega \rangle$ and a point x contained in a topological space X we say that $x = p\text{-lim}x_n$ if $\{n \in \omega \colon x_n \in U\} \in p$ for every neighbourhood $U \subseteq X$ of x.

Definition

- X is compact if every open cover of X has a finite subcover.
- X is p-compact if for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ such that x = p-lim x_n .
- *X* is countably compact if every countable open cover of *X* has a finite subcover.
 - iff every infinite set has an accumulation point. iff for every sequence $(x_n: n \in \omega) \subseteq X$ there is a point $x \in X$ and an ultrafilter p on ω such that x = p-lim x_n .
- X is pseudo-compact if every continuous function $f: X \to \mathbb{R}$ is bounded.

Given an ultrafilter p on ω , a sequence $\langle x_n \colon n \in \omega \rangle$ and a point x contained in a topological space X we say that $x = p\text{-lim}x_n$ if $\{n \in \omega \colon x_n \in U\} \in p$ for every neighbourhood $U \subseteq X$ of x.

Definition

- X is compact if every open cover of X has a finite subcover.
- X is p-compact if for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ such that x = p-lim x_n .
- X is countably compact if every countable open cover of X has a finite subcover.
 - iff every infinite set has an accumulation point.
 - iff for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ and an ultrafilter p on ω such that x = p-lim x_n .
- X is pseudo-compact if every continuous function $f: X \to \mathbb{R}$ is bounded.

Given an ultrafilter p on ω , a sequence $\langle x_n \colon n \in \omega \rangle$ and a point x contained in a topological space X we say that $x = p\text{-lim}x_n$ if $\{n \in \omega \colon x_n \in U\} \in p$ for every neighbourhood $U \subseteq X$ of x.

Definition

- X is compact if every open cover of X has a finite subcover.
- X is p-compact if for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ such that x = p-lim x_n .
- X is countably compact if every countable open cover of X has a finite subcover.
 - iff every infinite set has an accumulation point.
 - iff for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ and an ultrafilter p on ω such that x = p-lim x_n .
- X is pseudo-compact if every continuous function $f: X \to \mathbb{R}$ is bounded.

Given an ultrafilter p on ω , a sequence $\langle x_n \colon n \in \omega \rangle$ and a point x contained in a topological space X we say that $x = p\text{-lim}x_n$ if $\{n \in \omega \colon x_n \in U\} \in p$ for every neighbourhood $U \subseteq X$ of x.

Definition

- X is compact if every open cover of X has a finite subcover.
- X is p-compact if for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ such that x = p-lim x_n .
- X is countably compact if every countable open cover of X has a finite subcover.
 - iff every infinite set has an accumulation point.
 - iff for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ and an ultrafilter p on ω such that x = p-lim x_n .
- X is pseudo-compact if every continuous function $f: X \to \mathbb{R}$ is bounded.

Given an ultrafilter p on ω , a sequence $\langle x_n \colon n \in \omega \rangle$ and a point x contained in a topological space X we say that $x = p\text{-lim}x_n$ if $\{n \in \omega \colon x_n \in U\} \in p$ for every neighbourhood $U \subseteq X$ of x.

Definition

- X is compact if every open cover of X has a finite subcover.
- X is p-compact if for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ such that x = p-lim x_n .
- X is countably compact if every countable open cover of X has a finite subcover.
 - iff every infinite set has an accumulation point.
 - iff for every sequence $\langle x_n \colon n \in \omega \rangle \subseteq X$ there is a point $x \in X$ and an ultrafilter p on ω such that x = p-lim x_n .
- X is pseudo-compact if every continuous function $f: X \to \mathbb{R}$ is bounded.

Versions of compatness and products

- (Tychonoff '30/'35) Any product of compact spaces is compact.
- (Ginsburg-Saks '75) Any product of p-compact spaces is p-compact.
- (Tereska '52, Novák '53) There are countably compact spaces whose square is not even pseudo-compact.
- (Comfort-Ross '66) Any product of pseudo-compact topological groups is pseudo-compact.

Problem (Comfort '66)

Versions of compatness and products

- (Tychonoff '30/'35) Any product of compact spaces is compact.
- (Ginsburg-Saks '75) Any product of p-compact spaces is p-compact.
- (Tereska '52, Novák '53) There are countably compact spaces whose square is not even pseudo-compact.
- (Comfort-Ross '66) Any product of pseudo-compact topological groups is pseudo-compact.

Problem (Comfort '66)

Versions of compatness and products

- (Tychonoff '30/'35) Any product of compact spaces is compact.
- (Ginsburg-Saks '75) Any product of p-compact spaces is p-compact.
- (Tereska '52, Novák '53) There are countably compact spaces whose square is not even pseudo-compact.
- (Comfort-Ross '66) Any product of pseudo-compact topological groups is pseudo-compact.

Problem (Comfort '66)

Comfort's problem – consistent solutions

Problem (Comfort '66)

- (van Douwen '80) (MA) There are two countably compact subgroups of 2^c whose product is not countably compact.
- (van Mill-Hart '91) (MA_{ctble}) There is a countably compact group whose square is not countably compact.
- (Tomita '99) (MA_{ctble}) There is a group whose square is countably compact but the cube is not.
- (van Douwen '80) Every countably compact Boolean group without (nontrivial) convergent sequences contains two countably compact subgroups whose product is not countably compact.
- (Hajnal-Juhász '76) (CH) There is a countably compact Boolean group without convergent sequences.

Comfort's problem – consistent solutions

Problem (Comfort '66)

- (van Douwen '80) (MA) There are two countably compact subgroups of 2^c whose product is not countably compact.
- (van Mill-Hart '91) (MA_{ctble}) There is a countably compact group whose square is not countably compact.
- (Tomita '99) (MA_{ctble}) There is a group whose square is countably compact but the cube is not.
- (van Douwen '80) Every countably compact Boolean group without (nontrivial) convergent sequences contains two countably compact subgroups whose product is not countably compact.
- (Hajnal-Juhász '76) (CH) There is a countably compact Boolean group without convergent sequences.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- 0 .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is p-compact.
- (Szeptycki-Tomita '09) Yes in the random real model

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- . . .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
-
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- . . .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
-
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- . . .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- . . .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- . . .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- . . .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent sequences?

- (Kuz'minov '58) Every compact topological group contains a non-trivial convergent sequence.
- (Hajnal-Juhász '76) Yes assuming CH.
- (van Douwen '80) Yes assuming MA.
- (Tomita, '99) Yes assuming MA_{ctble}.
- . . .
- (García Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective ultrafilter. In fact, such group is *p*-compact.
- (Szeptycki-Tomita '09) Yes in the random real model.

All of these constructions describe subgroups of $2^{\mathfrak{c}}$.

Contenido

Motivation

2 Solution to Comfort's/van Douwen's problem

Main result

Theorem

There is (in ZFC) a countably compact Boolean group (subgroup of 2^c) without non-trivial convergent sequences.

The Bohr topology on a group G is the weakest group topology making every homomorphism $\Phi \in \text{Hom}(G,\mathbb{T})$ continuous. We let (G,τ_{Bohr}) denote G equipped with the Bohr topology.

• (Folklore) If G is an Abelian group, then (G, τ_{Bohr}) is homeomorphic (and isomorphic) to a subgroup of $\mathbb{T}^{Hom(G,\mathbb{T})}$ via the evaluation mapping.

Theorem

Let G be a (infinite) countable Abelian group. Then (G, τ_{Bohr}) has no (non-trivial) convergent sequences.

The Bohr topology on a group G is the weakest group topology making every homomorphism $\Phi \in \text{Hom}(G,\mathbb{T})$ continuous. We let (G,τ_{Bohr}) denote G equipped with the Bohr topology.

• (Folklore) If G is an Abelian group, then (G, τ_{Bohr}) is homeomorphic (and isomorphic) to a subgroup of $\mathbb{T}^{Hom(G,\mathbb{T})}$ via the evaluation mapping.

Theorem

Let G be a (infinite) countable Abelian group. Then (G, τ_{Bohr}) has no (non-trivial) convergent sequences.

The Bohr topology on a group G is the weakest group topology making every homomorphism $\Phi \in \text{Hom}(G,\mathbb{T})$ continuous. We let (G,τ_{Bohr}) denote G equipped with the Bohr topology.

• (Folklore) If G is an Abelian group, then $(G, \tau_{\mathsf{Bohr}})$ is homeomorphic (and isomorphic) to a subgroup of $\mathbb{T}^{\mathsf{Hom}(G,\mathbb{T})}$ via the evaluation mapping.

Theorem

Let G be a (infinite) countable Abelian group. Then (G, τ_{Bohr}) has no (non-trivial) convergent sequences.

The Bohr topology on a group G is the weakest group topology making every homomorphism $\Phi \in \text{Hom}(G,\mathbb{T})$ continuous. We let (G,τ_{Bohr}) denote G equipped with the Bohr topology.

• (Folklore) If G is an Abelian group, then $(G, \tau_{\mathsf{Bohr}})$ is homeomorphic (and isomorphic) to a subgroup of $\mathbb{T}^{\mathsf{Hom}(G,\mathbb{T})}$ via the evaluation mapping.

Theorem

Let G be a (infinite) countable Abelian group. Then (G, τ_{Bohr}) has no (non-trivial) convergent sequences.

The Bohr topology on a group G is the weakest group topology making every homomorphism $\Phi \in \text{Hom}(G,\mathbb{T})$ continuous. We let (G,τ_{Bohr}) denote G equipped with the Bohr topology.

• (Folklore) If G is an Abelian group, then $(G, \tau_{\mathsf{Bohr}})$ is homeomorphic (and isomorphic) to a subgroup of $\mathbb{T}^{\mathsf{Hom}(G,\mathbb{T})}$ via the evaluation mapping.

Theorem

Let G be a (infinite) countable Abelian group. Then (G, τ_{Bohr}) has no (non-trivial) convergent sequences.

• (Folklore) Let X be a countably compact regular space without (non-trivial) convergent sequences. Then every infinite subset of X has at least $\mathfrak c$ accumulation points.

10 / 18

Given a group G and an ultrafilter $p \in \omega^*$, denote by

$$\mathsf{ult}_p(G) = (G)^\omega / \equiv_p \mathsf{g} \text{ iff } \{n: f(n) = g(n)\} \in p.$$

- ullet By Łós theorem, ult $_p(G)$ is a group with the same first order properties as G
- There is a natural embedding of G into $\mathrm{ult}_p(G)$ sending each $g \in G$ to the equivalence class of the constant function with value g. We shall therefore consider G as a subgroup of $\mathrm{ult}_p(G)$.

Every $\Phi\in\mathsf{Hom}(G,\mathbb{T})$ naturally extends to a homomorphism $\overline{\Phi}\in(\mathsf{ult}_p(G),\mathbb{T})$ by letting

$$\overline{\Phi}([f]) = p\text{-lim}_{n \in \omega} \Phi(f(n)).$$

We let $\tau_{\overline{\mathsf{Bohr}}}$ denote the weakest topology making every Φ continuous, where $\Phi \in \mathrm{Hom}(G,\mathbb{T}).$

Given a group G and an ultrafilter $p \in \omega^*$, denote by

$$\operatorname{ult}_p(G) = (G)^\omega / \equiv_p$$
 , where $f \equiv_p g$ iff $\{n : f(n) = g(n)\} \in p$.

- By Łós theorem, $ult_p(G)$ is a group with the same first order properties as G.
- There is a natural embedding of G into $\operatorname{ult}_p(G)$ sending each $g \in G$ to the equivalence class of the constant function with value g. We shall therefore consider G as a subgroup of $\operatorname{ult}_p(G)$.

Every $\Phi\in\mathsf{Hom}(G,\mathbb{T})$ naturally extends to a homomorphism $\overline{\Phi}\in(\mathsf{ult}_p(G),\mathbb{T})$ by letting

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \Phi(f(n)).$$

We let $\tau_{\overline{\mathrm{Bohr}}}$ denote the weakest topology making every $\overline{\Phi}$ continuous, where $\Phi \in \mathrm{Hom}(G,\mathbb{T})$.

Given a group G and an ultrafilter $p \in \omega^*$, denote by

$$\operatorname{ult}_p(G) = (G)^\omega / \equiv_p$$
 , where $f \equiv_p g$ iff $\{n : f(n) = g(n)\} \in p$.

- By Łós theorem, $ult_p(G)$ is a group with the same first order properties as G.
- There is a natural embedding of G into $\operatorname{ult}_p(G)$ sending each $g \in G$ to the equivalence class of the constant function with value g. We shall therefore consider G as a subgroup of $\operatorname{ult}_p(G)$.

Every $\Phi\in\mathsf{Hom}(G,\mathbb{T})$ naturally extends to a homomorphism $\overline{\Phi}\in(\mathsf{ult}_p(G),\mathbb{T})$ by letting

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \Phi(f(n)).$$

We let $\tau_{\overline{\mathrm{Bohr}}}$ denote the weakest topology making every $\overline{\Phi}$ continuous, where $\Phi \in \mathrm{Hom}(G,\mathbb{T})$.

Given a group G and an ultrafilter $p \in \omega^*$, denote by

$$\operatorname{ult}_p(G) = (G)^\omega / \equiv_p$$
 , where $f \equiv_p g$ iff $\{n : f(n) = g(n)\} \in p$.

- By Łós theorem, $ult_p(G)$ is a group with the same first order properties as G.
- There is a natural embedding of G into $\operatorname{ult}_p(G)$ sending each $g \in G$ to the equivalence class of the constant function with value g. We shall therefore consider G as a subgroup of $\operatorname{ult}_p(G)$.

Every $\Phi\in\mathsf{Hom}(G,\mathbb{T})$ naturally extends to a homomorphism $\overline{\Phi}\in(\mathsf{ult}_p(G),\mathbb{T})$ by letting

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \Phi(f(n)).$$

We let $\tau_{\overline{\mathrm{Bohr}}}$ denote the weakest topology making every $\overline{\Phi}$ continuous, where $\Phi \in \mathrm{Hom}(G,\mathbb{T})$.

Extensions of homomorphisms to ultrapowers

Given a group G and an ultrafilter $p \in \omega^*$, denote by

$$\operatorname{ult}_p(G) = (G)^\omega / \equiv_p$$
 , where $f \equiv_p g$ iff $\{n : f(n) = g(n)\} \in p$.

- By Łós theorem, $ult_p(G)$ is a group with the same first order properties as G.
- There is a natural embedding of G into $\operatorname{ult}_p(G)$ sending each $g \in G$ to the equivalence class of the constant function with value g. We shall therefore consider G as a subgroup of $\operatorname{ult}_p(G)$.

Every $\Phi \in \text{Hom}(G, \mathbb{T})$ naturally extends to a homomorphism $\overline{\Phi} \in (\text{ult}_p(G), \mathbb{T})$ by letting

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \Phi(f(n)).$$

We let $\tau_{\overline{\mathrm{Bohr}}}$ denote the weakest topology making every $\overline{\Phi}$ continuous, where $\Phi \in \mathrm{Hom}(G,\mathbb{T})$.

Extensions of homomorphisms to ultrapowers

Given a group G and an ultrafilter $p \in \omega^*$, denote by

$$\mathsf{ult}_p(G) = (G)^\omega / \equiv_p \mathsf{g} \text{ iff } \{n: f(n) = g(n)\} \in p.$$

- By Łós theorem, $ult_p(G)$ is a group with the same first order properties as G.
- There is a natural embedding of G into $\operatorname{ult}_p(G)$ sending each $g \in G$ to the equivalence class of the constant function with value g. We shall therefore consider G as a subgroup of $\operatorname{ult}_p(G)$.

Every $\Phi \in \text{Hom}(G, \mathbb{T})$ naturally extends to a homomorphism $\overline{\Phi} \in (\text{ult}_p(G), \mathbb{T})$ by letting

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \Phi(f(n)).$$

We let $\tau_{\overline{\mathsf{Bohr}}}$ denote the weakest topology making every $\overline{\Phi}$ continuous, where $\Phi \in \mathsf{Hom}(G,\mathbb{T})$.

The process can, of course, be iterated: given a group G, an ultrafilter $p \in \omega^*$ and $0 < \alpha \leqslant \omega_1$ let

$$\operatorname{ult}_{\rho}^{\alpha}(G) = \operatorname{ult}_{\rho}(\operatorname{ult}_{\rho}^{\beta}(G)) \text{ if } \alpha = \beta + 1,$$

and

$$\operatorname{ult}_p^\alpha(G) = \bigcup_{0 < \beta < \alpha} \operatorname{ult}_p^\beta(G) \text{ if } \alpha \text{ is limit.}$$

The group that will be relevant for us is the group $\mathrm{ult}_p^{\omega_1}(G)$, endowed with the topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by the homomorphisms in $\Phi \in \mathrm{Hom}(G,\mathbb{T})$ extended recursively all the way to $\mathrm{ult}_p^{\omega_1}(G)$ by the same formula as before:

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \overline{\Phi}(f(n)).$$

The (iterated) ultrapower with this topology is usually not Hausdorff, so we identify the inseparable functions and denote by $\text{Ult}_p^{\omega_1}(G)$ this quotient.

Fact

 $Ult_p^{\omega_1}(G)$ is a Hausdorff *p*-compact topological group.

The process can, of course, be iterated: given a group G, an ultrafilter $p \in \omega^*$ and $0 < \alpha \leqslant \omega_1$ let

$$\operatorname{ult}_{p}^{\alpha}(G) = \operatorname{ult}_{p}(\operatorname{ult}_{p}^{\beta}(G)) \text{ if } \alpha = \beta + 1,$$

and

$$\operatorname{ult}_p^\alpha(\mathcal{G}) = \bigcup_{0<\beta<\alpha} \operatorname{ult}_p^\beta(\mathcal{G}) \text{ if } \alpha \text{ is limit.}$$

The group that will be relevant for us is the group $\mathrm{ult}_p^{\omega_1}(G)$, endowed with the topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by the homomorphisms in $\Phi \in \mathrm{Hom}(G,\mathbb{T})$ extended recursively all the way to $\mathrm{ult}_p^{\omega_1}(G)$ by the same formula as before:

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \overline{\Phi}(f(n)).$$

The (iterated) ultrapower with this topology is usually not Hausdorff, so we identify the inseparable functions and denote by $\mathrm{Ult}_p^{\omega_1}(G)$ this quotient.

Fact

 $Ult_p^{\omega_1}(G)$ is a Hausdorff *p*-compact topological group.

The process can, of course, be iterated: given a group G, an ultrafilter $p \in \omega^*$ and $0 < \alpha \leqslant \omega_1$ let

$$\operatorname{ult}_{p}^{\alpha}(G) = \operatorname{ult}_{p}(\operatorname{ult}_{p}^{\beta}(G)) \text{ if } \alpha = \beta + 1,$$

and

$$\operatorname{ult}_p^\alpha(G) = \bigcup_{0<\beta<\alpha} \operatorname{ult}_p^\beta(G) \text{ if } \alpha \text{ is limit.}$$

The group that will be relevant for us is the group $\mathrm{ult}_p^{\omega_1}(G)$, endowed with the topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by the homomorphisms in $\Phi \in \mathrm{Hom}(G,\mathbb{T})$ extended recursively all the way to $\mathrm{ult}_p^{\omega_1}(G)$ by the same formula as before:

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \overline{\Phi}(f(n)).$$

The (iterated) ultrapower with this topology is usually not Hausdorff, so we identify the inseparable functions and denote by $\mathrm{Ult}_p^{\omega_1}(G)$ this quotient.

Fact

 $Ult_p^{\omega_1}(G)$ is a Hausdorff p-compact topological group.

The process can, of course, be iterated: given a group G, an ultrafilter $p \in \omega^*$ and $0 < \alpha \leqslant \omega_1$ let

$$\operatorname{ult}_{p}^{\alpha}(G) = \operatorname{ult}_{p}(\operatorname{ult}_{p}^{\beta}(G)) \text{ if } \alpha = \beta + 1,$$

and

$$\operatorname{ult}_p^\alpha(\mathcal{G}) = \bigcup_{0<\beta<\alpha} \operatorname{ult}_p^\beta(\mathcal{G}) \text{ if } \alpha \text{ is limit.}$$

The group that will be relevant for us is the group $\mathrm{ult}_p^{\omega_1}(G)$, endowed with the topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by the homomorphisms in $\Phi \in \mathrm{Hom}(G,\mathbb{T})$ extended recursively all the way to $\mathrm{ult}_p^{\omega_1}(G)$ by the same formula as before:

$$\overline{\Phi}([f]) = p\text{-}\lim_{n \in \omega} \overline{\Phi}(f(n)).$$

The (iterated) ultrapower with this topology is usually not Hausdorff, so we identify the inseparable functions and denote by $\text{Ult}_p^{\omega_1}(G)$ this quotient.

Fact

 $\mathsf{Ult}^{\omega_1}_p(G)$ is a Hausdorff p-compact topological group.

Theorem

There is (in ZFC) a countably compact Boolean group (subgroup of 2^c) without non-trivial convergent sequences.

Fix an ultrafilter $p \in \omega^*$ and consider $\mathrm{Ult}_p^{\omega_1}(G)$. There is a problem:

• Does $Ult_p^{\omega_1}(G)$ have (non-trivial) convergent sequences?

Theorem

Theorem

There is (in ZFC) a countably compact Boolean group (subgroup of 2^c) without non-trivial convergent sequences.

Fix an ultrafilter $p \in \omega^*$ and consider $\mathrm{Ult}_p^{\omega_1}(G)$. There is a problem:

• Does $Ult_p^{\omega_1}(G)$ have (non-trivial) convergent sequences?

Theorem

Theorem

There is (in ZFC) a countably compact Boolean group (subgroup of 2^c) without non-trivial convergent sequences.

Fix an ultrafilter $p \in \omega^*$ and consider $\mathrm{Ult}_p^{\omega_1}(G)$. There is a problem:

• Does $Ult_p^{\omega_1}(G)$ have (non-trivial) convergent sequences?

Theorem

Theorem

There is (in ZFC) a countably compact Boolean group (subgroup of 2^c) without non-trivial convergent sequences.

Fix an ultrafilter $p \in \omega^*$ and consider $\mathrm{Ult}_p^{\omega_1}(G)$. There is a problem:

• Does $Ult_p^{\omega_1}(G)$ have (non-trivial) convergent sequences?

Theorem

The plan works for selective ultrafilters and for $([\omega]^{<\omega}, \triangle)$

Proposition

p is selective iff for every p-independent set $\{f_n\colon n\in\omega\}$ of functions $f_n\colon\omega\to[\omega]^{<\omega}$, there is a sequence $\langle U_n\colon n\in\omega\rangle\subseteq p$ such that $f_n\upharpoonright U_n$ is one-to-one for every $n\in\omega$ and $\{f_n(m)\colon n\in\omega \text{ and } m\in U_n\}$ is linearly independent.

Given a non-empty set I, we shall call a set $\{f_i \colon i \in I\}$ of functions $f_i \colon \omega \to [\omega]^{<\omega}$ p-independent if

$$\left\{n\colon a+\sum_{i\in E}f_i(n)=\varnothing\right\}\notin p$$

for every non-empty finite set $E \subset I$ and every $a \in [\omega]^{<\omega}$.

Corollary

If p is selective, then $\mathrm{Ult}_p^{\omega_1}([\omega]^{<\omega})$ is a Hausdorff p-compact topological group without (non-trvial) convergent sequences.

The plan works for selective ultrafilters and for $([\omega]^{<\omega}, \triangle)$

Proposition

p is selective iff for every p-independent set $\{f_n\colon n\in\omega\}$ of functions $f_n\colon\omega\to[\omega]^{<\omega}$, there is a sequence $\langle U_n\colon n\in\omega\rangle\subseteq p$ such that $f_n\upharpoonright U_n$ is one-to-one for every $n\in\omega$ and $\{f_n(m)\colon n\in\omega \text{ and } m\in U_n\}$ is linearly independent.

Given a non-empty set I, we shall call a set $\{f_i : i \in I\}$ of functions $f_i : \omega \to [\omega]^{<\omega}$ p-independent if

$$\left\{n\colon a+\sum_{i\in E}f_i(n)=\varnothing\right\}\notin p$$

for every non-empty finite set $E \subset I$ and every $a \in [\omega]^{<\omega}$.

Corollary

If p is selective, then $\mathrm{Ult}_p^{\omega_1}([\omega]^{<\omega})$ is a Hausdorff p-compact topological group without (non-trvial) convergent sequences.

The plan works for selective ultrafilters and for $([\omega]^{<\omega}, \triangle)$

Proposition

p is selective iff for every p-independent set $\{f_n\colon n\in\omega\}$ of functions $f_n\colon\omega\to[\omega]^{<\omega}$, there is a sequence $\langle U_n\colon n\in\omega\rangle\subseteq p$ such that $f_n\upharpoonright U_n$ is one-to-one for every $n\in\omega$ and $\{f_n(m)\colon n\in\omega \text{ and } m\in U_n\}$ is linearly independent.

Given a non-empty set I, we shall call a set $\{f_i : i \in I\}$ of functions $f_i : \omega \to [\omega]^{<\omega}$ p-independent if

$$\left\{n\colon a+\sum_{i\in E}f_i(n)=\varnothing\right\}\notin p$$

for every non-empty finite set $E \subset I$ and every $a \in [\omega]^{<\omega}$.

Corollary

If p is selective, then $\mathsf{Ult}_p^{\omega_1}([\omega]^{<\omega})$ is a Hausdorff p-compact topological group without (non-trvial) convergent sequences.

Lemma

There is a sequence $\langle p_{\alpha} \colon \alpha < \mathfrak{c} \rangle \subset \omega^*$ such that for every $D \in [\mathfrak{c}]^{\omega}$ and every sequence $\langle f_{\alpha} \colon \alpha \in D \rangle \subset ([\omega]^{<\omega})^{\omega}$ of one-to-one enumerations of linearly independent sets there are $\langle U_{\alpha} \colon \alpha \in D \rangle$ such that

- $U_{\alpha} \in p_{\alpha}$ for every $\alpha \in D$, and
- $\{f_{\alpha}(n): \alpha \in D \text{ and } n \in U_{\alpha}\}$ is a linearly independent subset of $[\omega]^{<\omega}$.

We shall construct a countably compact group topology on $[\mathfrak{c}]^{<\omega}$ starting from $([\omega]^{<\omega}, \tau_{\mathsf{Bohr}})$ as follows: fix an indexed family $\{f_\alpha \colon \alpha \in [\omega, \mathfrak{c})\} \subset ([\mathfrak{c}]^{<\omega})^{\omega}$ of one-to-one sequences s.t.

- lacktriangledown for every infinite set $X\subseteq [\mathfrak{c}]^{\sim\omega}$ there is an $\alpha\in [\omega,\mathfrak{c})$ with $\mathrm{rng}(t_{\alpha})\subseteq X$,
- $\ igotimes$ each f_lpha is an enumeration of a linearly independent set, and
- \bigcirc rng $(f_{\alpha}) \subset [\alpha]^{\leq \omega}$ for every $\alpha \in [\omega, \mathfrak{c})$.

For every $\Phi \in \operatorname{Hom}([\omega]^{<\omega}, \mathbb{T}) = \operatorname{Hom}([\omega]^{<\omega}, 2)$ define its extension $\overline{\Phi} \in \operatorname{Hom}([\mathfrak{c}]^{<\omega}, 2)$ recursively by putting

$$\Phi(\{\alpha\}) = p_{\alpha}\text{-}\lim_{n \in \omega} \Phi(f_{\alpha}(n)).$$

with the group topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by $\{\overline{\Phi}\colon \Phi\in\mathrm{Hom}([\omega]^{<\omega}_{\overline{\Phi}},2\}$ on $[\mathfrak{c}]^{<\omega}_{\overline{\Phi}}$

Lemma

There is a sequence $\langle p_\alpha \colon \alpha < \mathfrak{c} \rangle \subset \omega^*$ such that for every $D \in [\mathfrak{c}]^\omega$ and every sequence $\langle f_\alpha \colon \alpha \in D \rangle \subset ([\omega]^{<\omega})^\omega$ of one-to-one enumerations of linearly independent sets there are $\langle U_\alpha \colon \alpha \in D \rangle$ such that

- $U_{\alpha} \in p_{\alpha}$ for every $\alpha \in D$, and
- $\{f_{\alpha}(n): \alpha \in D \text{ and } n \in U_{\alpha}\}$ is a linearly independent subset of $[\omega]^{<\omega}$.

We shall construct a countably compact group topology on $[\mathfrak{c}]^{<\omega}$ starting from $([\omega]^{<\omega}, \tau_{\mathsf{Bohr}})$ as follows: fix an indexed family $\{f_\alpha \colon \alpha \in [\omega, \mathfrak{c})\} \subset ([\mathfrak{c}]^{<\omega})^{\omega}$ of one-to-one sequences s.t.

- of for every infinite set $X \subseteq [\mathfrak{c}]^{<\omega}$ there is an $\alpha \in [\omega, \mathfrak{c})$ with $\mathrm{rng}(f_{\alpha}) \subseteq X$,
- lacktriangle each f_lpha is an enumeration of a linearly independent set, and

For every $\Phi \in \text{Hom}([\omega]^{<\omega}, \mathbb{T}) = \text{Hom}([\omega]^{<\omega}, 2)$ define its extension $\overline{\Phi} \in \text{Hom}([\mathfrak{c}]^{<\omega}, 2)$ recursively by putting

$$\Phi(\{\alpha\}) = p_{\alpha}\text{-}\lim_{n \in \omega} \Phi(f_{\alpha}(n)).$$

with the group topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by $\{\Phi\colon\Phi\in\mathrm{Hom}([\omega]_{\bullet}^{<\omega},2)\}$, on $[\mathfrak{c}]^{<\omega}$

Lemma

There is a sequence $\langle p_\alpha \colon \alpha < \mathfrak{c} \rangle \subset \omega^*$ such that for every $D \in [\mathfrak{c}]^\omega$ and every sequence $\langle f_\alpha \colon \alpha \in D \rangle \subset ([\omega]^{<\omega})^\omega$ of one-to-one enumerations of linearly independent sets there are $\langle U_\alpha \colon \alpha \in D \rangle$ such that

- $U_{\alpha} \in p_{\alpha}$ for every $\alpha \in D$, and
- $\{f_{\alpha}(n): \alpha \in D \text{ and } n \in U_{\alpha}\}$ is a linearly independent subset of $[\omega]^{<\omega}$.

We shall construct a countably compact group topology on $[\mathfrak{c}]^{<\omega}$ starting from $([\omega]^{<\omega}, \tau_{\mathsf{Bohr}})$ as follows: fix an indexed family $\{f_\alpha \colon \alpha \in [\omega, \mathfrak{c})\} \subset ([\mathfrak{c}]^{<\omega})^{\omega}$ of one-to-one sequences s.t.

- for every infinite set $X \subseteq [\mathfrak{c}]^{<\omega}$ there is an $\alpha \in [\omega, \mathfrak{c})$ with $rng(f_{\alpha}) \subseteq X$,
- ullet each f_{lpha} is an enumeration of a linearly independent set, and

For every $\Phi\in \mathsf{Hom}([\omega]^{<\omega},\mathbb{T})=\mathsf{Hom}([\omega]^{<\omega},2)$ define its extension $\overline{\Phi}\in \mathsf{Hom}([\mathfrak{c}]^{<\omega},2)$ recursively by putting

$$\overline{\Phi}(\{\alpha\}) = p_{\alpha}\text{-}\lim_{n \in \omega} \overline{\Phi}(f_{\alpha}(n)).$$

with the group topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by $\{\overline{\Phi}\colon \Phi\in\mathrm{Hom}([\omega]^{<\omega}_{\overline{\bullet}},2)\}$ on $[\mathfrak{c}]^{<\omega}_{\overline{\bullet}}$

Lemma

There is a sequence $\langle p_{\alpha} \colon \alpha < \mathfrak{c} \rangle \subset \omega^*$ such that for every $D \in [\mathfrak{c}]^{\omega}$ and every sequence $\langle f_{\alpha} \colon \alpha \in D \rangle \subset ([\omega]^{<\omega})^{\omega}$ of one-to-one enumerations of linearly independent sets there are $\langle U_{\alpha} \colon \alpha \in D \rangle$ such that

- $U_{\alpha} \in p_{\alpha}$ for every $\alpha \in D$, and
- $\{f_{\alpha}(n): \alpha \in D \text{ and } n \in U_{\alpha}\}$ is a linearly independent subset of $[\omega]^{<\omega}$.

We shall construct a countably compact group topology on $[\mathfrak{c}]^{<\omega}$ starting from $([\omega]^{<\omega}, \tau_{\mathsf{Bohr}})$ as follows: fix an indexed family $\{f_\alpha \colon \alpha \in [\omega, \mathfrak{c})\} \subset ([\mathfrak{c}]^{<\omega})^{\omega}$ of one-to-one sequences s.t.

- **9** for every infinite set $X \subseteq [\mathfrak{c}]^{<\omega}$ there is an $\alpha \in [\omega, \mathfrak{c})$ with $rng(f_{\alpha}) \subseteq X$,
- $oldsymbol{0}$ each f_{lpha} is an enumeration of a linearly independent set, and

For every $\Phi \in \text{Hom}([\omega]^{<\omega}, \mathbb{T}) = \text{Hom}([\omega]^{<\omega}, 2)$ define its extension $\overline{\Phi} \in \text{Hom}([\mathfrak{c}]^{<\omega}, 2)$ recursively by putting

$$\overline{\Phi}(\{\alpha\}) = p_{\alpha}\text{-lim}_{n \in \omega} \overline{\Phi}(f_{\alpha}(n)).$$

with the group topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by $\{\Phi\colon\Phi\in\mathrm{Hom}([\omega]_{\bullet}^{<\omega},2)\}$, on $[\mathfrak{c}]^{<\omega}$

Lemma

There is a sequence $\langle p_\alpha \colon \alpha < \mathfrak{c} \rangle \subset \omega^*$ such that for every $D \in [\mathfrak{c}]^\omega$ and every sequence $\langle f_\alpha \colon \alpha \in D \rangle \subset ([\omega]^{<\omega})^\omega$ of one-to-one enumerations of linearly independent sets there are $\langle U_\alpha \colon \alpha \in D \rangle$ such that

- $U_{\alpha} \in p_{\alpha}$ for every $\alpha \in D$, and
- $\{f_{\alpha}(n) : \alpha \in D \text{ and } n \in U_{\alpha}\}$ is a linearly independent subset of $[\omega]^{<\omega}$.

We shall construct a countably compact group topology on $[\mathfrak{c}]^{<\omega}$ starting from $([\omega]^{<\omega}, \tau_{\mathsf{Bohr}})$ as follows: fix an indexed family $\{f_\alpha \colon \alpha \in [\omega, \mathfrak{c})\} \subset ([\mathfrak{c}]^{<\omega})^{\omega}$ of one-to-one sequences s.t.

- for every infinite set $X \subseteq [\mathfrak{c}]^{<\omega}$ there is an $\alpha \in [\omega, \mathfrak{c})$ with $rng(f_{\alpha}) \subseteq X$,
- $oldsymbol{\circ}$ each f_{lpha} is an enumeration of a linearly independent set, and
- \bullet rng $(f_{\alpha}) \subset [\alpha]^{<\omega}$ for every $\alpha \in [\omega, \mathfrak{c})$.

For every $\Phi\in \operatorname{Hom}([\omega]^{<\omega},\mathbb{T})=\operatorname{Hom}([\omega]^{<\omega},2)$ define its extension $\overline{\Phi}\in \operatorname{Hom}([\mathfrak{c}]^{<\omega},2)$ recursively by putting

$$\overline{\Phi}(\{\alpha\}) = p_{\alpha}\text{-lim}_{n \in \omega} \overline{\Phi}(f_{\alpha}(n)).$$

with the group topology $\tau_{\overline{\text{Bohr}}}$ induced by $\{\Phi \colon \Phi \in \text{Hom}([\omega]_{\bullet}^{<\omega}, 2)\}$, on $[\mathfrak{c}]^{<\omega}$

Lemma

There is a sequence $\langle p_\alpha \colon \alpha < \mathfrak{c} \rangle \subset \omega^*$ such that for every $D \in [\mathfrak{c}]^\omega$ and every sequence $\langle f_\alpha \colon \alpha \in D \rangle \subset ([\omega]^{<\omega})^\omega$ of one-to-one enumerations of linearly independent sets there are $\langle U_\alpha \colon \alpha \in D \rangle$ such that

- $U_{\alpha} \in p_{\alpha}$ for every $\alpha \in D$, and
- $\{f_{\alpha}(n) : \alpha \in D \text{ and } n \in U_{\alpha}\}$ is a linearly independent subset of $[\omega]^{<\omega}$.

We shall construct a countably compact group topology on $[\mathfrak{c}]^{<\omega}$ starting from $([\omega]^{<\omega}, \tau_{\mathsf{Bohr}})$ as follows: fix an indexed family $\{f_\alpha \colon \alpha \in [\omega, \mathfrak{c})\} \subset ([\mathfrak{c}]^{<\omega})^{\omega}$ of one-to-one sequences s.t.

- for every infinite set $X \subseteq [\mathfrak{c}]^{<\omega}$ there is an $\alpha \in [\omega, \mathfrak{c})$ with $rng(f_{\alpha}) \subseteq X$,
- $oldsymbol{\circ}$ each f_{lpha} is an enumeration of a linearly independent set, and
- \bullet rng $(f_{\alpha}) \subset [\alpha]^{<\omega}$ for every $\alpha \in [\omega, \mathfrak{c})$.

For every $\Phi\in \operatorname{Hom}([\omega]^{<\omega},\mathbb{T})=\operatorname{Hom}([\omega]^{<\omega},2)$ define its extension $\overline{\Phi}\in \operatorname{Hom}([\mathfrak{c}]^{<\omega},2)$ recursively by putting

$$\overline{\Phi}(\{\alpha\}) = p_{\alpha}\text{-lim}_{n \in \omega} \overline{\Phi}(f_{\alpha}(n)).$$

with the group topology $\tau_{\overline{\text{Bohr}}}$ induced by $\{\Phi \colon \Phi \in \text{Hom}([\omega]_{\bullet}^{<\omega}, 2)\}$, on $[\mathfrak{c}]^{<\omega}$

Lemma

There is a sequence $\langle p_{\alpha} \colon \alpha < \mathfrak{c} \rangle \subset \omega^*$ such that for every $D \in [\mathfrak{c}]^{\omega}$ and every sequence $\langle f_{\alpha} \colon \alpha \in D \rangle \subset ([\omega]^{<\omega})^{\omega}$ of one-to-one enumerations of linearly independent sets there are $\langle U_{\alpha} \colon \alpha \in D \rangle$ such that

- $U_{\alpha} \in p_{\alpha}$ for every $\alpha \in D$, and
- $\{f_{\alpha}(n) : \alpha \in D \text{ and } n \in U_{\alpha}\}$ is a linearly independent subset of $[\omega]^{<\omega}$.

We shall construct a countably compact group topology on $[\mathfrak{c}]^{<\omega}$ starting from $([\omega]^{<\omega}, \tau_{\mathsf{Bohr}})$ as follows: fix an indexed family $\{f_\alpha \colon \alpha \in [\omega, \mathfrak{c})\} \subset ([\mathfrak{c}]^{<\omega})^{\omega}$ of one-to-one sequences s.t.

- for every infinite set $X \subseteq [\mathfrak{c}]^{<\omega}$ there is an $\alpha \in [\omega, \mathfrak{c})$ with $rng(f_{\alpha}) \subseteq X$,
- $oldsymbol{\circ}$ each f_{lpha} is an enumeration of a linearly independent set, and

For every $\Phi \in \operatorname{Hom}([\omega]^{<\omega}, \mathbb{T}) = \operatorname{Hom}([\omega]^{<\omega}, 2)$ define its extension $\overline{\Phi} \in \operatorname{Hom}([\mathfrak{c}]^{<\omega}, 2)$ recursively by putting

$$\overline{\Phi}(\{\alpha\}) = p_{\alpha}\text{-}\lim_{n \in \omega} \overline{\Phi}(f_{\alpha}(n)).$$

with the group topology $\tau_{\overline{\mathrm{Bohr}}}$ induced by $\{\overline{\Phi}\colon \Phi\in\mathrm{Hom}([\omega]^{<\omega}_{\bullet},2)\}$ on $[\mathfrak{c}]^{<\omega}_{\bullet}$

Call a set $D \in [\mathfrak{c}]^{<\omega}$ suitably closed if $\omega \subseteq D$ and $\bigcup_{n \in \omega} f_{\alpha}(n) \subseteq D$ for every $\alpha \in D$.

Proposition

The group topology $\tau_{\overline{Bohr}}$ contains no non-trivial convergent sequences iff $\forall D \in [\mathfrak{c}]^{\omega}$ suitably closed $\forall X \in [D]^{\omega} \ \exists \Psi \in \mathit{Hom}([D]^{<\omega},2) \ \mathit{s.t.}$

- ① $\forall \alpha \in D \ \Psi(\{\alpha\}) = p_{\alpha}\text{-}lim_{n \in \omega} \Psi(f_{\alpha}(n))$, and
- $|X \cap \mathit{Ker}(\Psi)| = |X \setminus \mathit{Ker}(\Psi)| = \omega.$

Now, if this happens (and it does by our choice of the ultrafilters) then, in particular,

$$K = \bigcap_{\Phi \in \mathsf{Hom}([\omega]^{<\omega}, 2)} \mathsf{Ker}(\{\overline{\Phi})$$

is finite, and $[\mathfrak{c}]^{<\omega}/K$ with the quotient topology is the Hausdorff countably compact group without non-trivial convergent sequences we want.

Call a set $D \in [\mathfrak{c}]^{<\omega}$ suitably closed if $\omega \subseteq D$ and $\bigcup_{n \in \omega} f_{\alpha}(n) \subseteq D$ for every $\alpha \in D$.

Proposition

The group topology $\tau_{\overline{Bohr}}$ contains no non-trivial convergent sequences iff $\forall D \in [\mathfrak{c}]^{\omega}$ suitably closed $\forall X \in [D]^{\omega} \ \exists \Psi \in \mathit{Hom}([D]^{<\omega},2) \ \mathit{s.t.}$

- $\forall \alpha \in D \ \Psi(\{\alpha\}) = p_{\alpha}$ - $\lim_{n \in \omega} \Psi(f_{\alpha}(n))$, and
- $|X \cap \mathit{Ker}(\Psi)| = |X \setminus \mathit{Ker}(\Psi)| = \omega.$

Now, if this happens (and it does by our choice of the ultrafilters) then, in particular,

$$K = \bigcap_{\Phi \in \mathsf{Hom}([\omega]^{<\omega},2)} \mathsf{Ker}(\{\overline{\Phi})$$

is finite, and $[\mathfrak{c}]^{<\omega}/K$ with the quotient topology is the Hausdorff countably compact group without non-trivial convergent sequences we want.

Call a set $D \in [\mathfrak{c}]^{<\omega}$ suitably closed if $\omega \subseteq D$ and $\bigcup_{n \in \omega} f_{\alpha}(n) \subseteq D$ for every $\alpha \in D$.

Proposition

The group topology $\tau_{\overline{Bohr}}$ contains no non-trivial convergent sequences iff $\forall D \in [\mathfrak{c}]^{\omega}$ suitably closed $\forall X \in [D]^{\omega} \ \exists \Psi \in \mathit{Hom}([D]^{<\omega},2) \ \mathit{s.t.}$

- $|X \cap \mathit{Ker}(\Psi)| = |X \setminus \mathit{Ker}(\Psi)| = \omega.$

Now, if this happens (and it does by our choice of the ultrafilters) then, in particular,

$$K = \bigcap_{\Phi \in \mathsf{Hom}([\omega]^{<\omega},2)} \mathsf{Ker}(\{\overline{\Phi})$$

is finite, and $[\mathfrak{c}]^{<\omega}/K$ with the quotient topology is the Hausdorff countably compact group without non-trivial convergent sequences we want.

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, i.e., contains a copy of Z?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with bothsided cancellation which is not a topological group?

Yes to 1 implies Yes to 2.

- Is there consistently a countably compact group G without convergent se quences of weight less than c?
- ullet Is there (in ZFC) a p-compact group G without convergent sequences?
- Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $Ult_p(G)$ has no (non-trivial) convergent sequences?

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, *i.e.*, contains a copy of \mathbb{Z} ?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with both-sided cancellation which is not a topological group?

Yes to 1 implies Yes to 2

- Is there consistently a countably compact group G without convergent se quences of weight less than c?
- ullet Is there (in ZFC) a p-compact group G without convergent sequences?
- Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $Ult_p(G)$ has no (non-trivial) convergent sequences?

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, *i.e.*, contains a copy of \mathbb{Z} ?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with bothsided cancellation which is not a topological group?

Yes to 1 implies Yes to 2

Questions

• Is there consistently a countably compact group G without convergent se quences of weight less than c?

• Is there (in ZFC) a p-compact group G without convergent sequences?

• Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $\text{Ult}_p(G)$ has no (non-trivial)

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, *i.e.*, contains a copy of \mathbb{Z} ?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with bothsided cancellation which is not a topological group?

Yes to 1 implies Yes to 2

Questions

• Is there consistently a countably compact group G without convergent se quences of weight less than c?

• Is there (in ZFC) a p-compact group G without convergent sequences?

• Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $\text{Ult}_p(G)$ has no (non-trivial)

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, *i.e.*, contains a copy of \mathbb{Z} ?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with both-sided cancellation which is not a topological group?

Yes to 1 implies Yes to 2.

Questions

• Is there consistently a countably compact group G without convergent sequences of weight less than c?

• Is there (in ZFC) a *p*-compact group *G* without convergent sequences?

• Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $Ult_p(G)$ has no (non-trivial)

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, *i.e.*, contains a copy of \mathbb{Z} ?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with bothsided cancellation which is not a topological group?

Yes to 1 implies Yes to 2.

- Is there consistently a countably compact group G without convergent sequences of weight less than \mathfrak{c} ?
- Is there (in ZFC) a p-compact group G without convergent sequences?
- Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $\mathsf{Ult}_p(G)$ has no (non-trivial) convergent sequences?

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, *i.e.*, contains a copy of \mathbb{Z} ?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with bothsided cancellation which is not a topological group?

Yes to 1 implies Yes to 2.

- Is there consistently a countably compact group G without convergent sequences of weight less than \mathfrak{c} ?
- Is there (in ZFC) a p-compact group G without convergent sequences?
- Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $\mathsf{Ult}_p(G)$ has no (non-trivial) convergent sequences?

Theorem

For every $n \in \omega$ there is a group G such that G^n is countably compact while G^{n+1} is not.

Questions

- Is there a countably compact group G without convergent sequences which is not a torsion group, *i.e.*, contains a copy of \mathbb{Z} ?
- (Wallace '55) Is there a Hausdorff countably compact semigroup with bothsided cancellation which is not a topological group?

Yes to 1 implies Yes to 2.

- Is there consistently a countably compact group G without convergent sequences of weight less than \mathfrak{c} ?
- Is there (in ZFC) a p-compact group G without convergent sequences?
- Is there (in ZFC) a $p \in \omega^*$ and a group G s.t. $\mathsf{Ult}_p(G)$ has no (non-trivial) convergent sequences?

Thank you for your attention!