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Versions of compatness

Given an ultrafilter p on w, a sequence (x,: n € w) and a point x contained in a

topological space X we say that x = p-limx, if {n € w: x, € U} € p for every
neighbourhood U C X of x.
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Given an ultrafilter p on w, a sequence (x,: n € w) and a point x contained in a
topological space X we say that x = p-limx, if {n € w: x, € U} € p for every
neighbourhood U C X of x.

Definition
Let X be a topological space and let p be an ultrafilter on w.
@ X is compact if every open cover of X has a finite subcover.

e X is p-compact if for every sequence (x,: n € w) C X there is a point x € X
such that x = p-limx,.
@ X is countably compact if every countable open cover of X has a finite sub-
cover.
iff every infinite set has an accumulation point.

iff for every sequence (x,: n € w) C X there is a point x € X and an ultrafilter
p on w such that x = p-limx,.
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Versions of compatness

Given an ultrafilter p on w, a sequence (x,: n € w) and a point x contained in a
topological space X we say that x = p-limx, if {n € w: x, € U} € p for every
neighbourhood U C X of x.

Definition
Let X be a topological space and let p be an ultrafilter on w.
@ X is compact if every open cover of X has a finite subcover.

e X is p-compact if for every sequence (x,: n € w) C X there is a point x € X
such that x = p-limx,.

@ X is countably compact if every countable open cover of X has a finite sub-
cover.

iff every infinite set has an accumulation point.

iff for every sequence (x,: n € w) C X there is a point x € X and an ultrafilter
p on w such that x = p-limx,.

@ X is pseudo-compact if every continuous function f: X — R is bounded.
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Versions of compatness and products

@ (Tychonoff '30/'35) Any product of compact spaces is compact.
o (Ginsburg-Saks '75) Any product of p-compact spaces is p-compact.
°

(Tereska '52, Novak '53) There are countably compact spaces whose square is
not even pseudo-compact.
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Versions of compatness and products

@ (Tychonoff '30/'35) Any product of compact spaces is compact.
o (Ginsburg-Saks '75) Any product of p-compact spaces is p-compact.
° (

Tereska '52, Novak '53) There are countably compact spaces whose square is
not even pseudo-compact.

o (Comfort-Ross '66) Any product of pseudo-compact topological groups is pseudo-
compact.

Problem (Comfort '66)

Are there countably compact groups G and H such that G x H is not countably
compact?
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Comfort's problem — consistent solutions

Problem (Comfort '66)

Are there countably compact groups G and H such that G x H is not countably
compact?

o (van Douwen '80) (MA) There are two countably compact subgroups of 2¢
whose product is not countably compact.

o (van Mill-Hart '91) (MA ) There is a countably compact group whose square
is not countably compact.

o (Tomita '99) (MAcwie) There is a group whose square is countably compact
but the cube is not.
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Comfort's problem — consistent solutions

Problem (Comfort '66)

Are there countably compact groups G and H such that G x H is not countably
compact?

o (van Douwen '80) (MA) There are two countably compact subgroups of 2¢
whose product is not countably compact.

o (van Mill-Hart '91) (MA ) There is a countably compact group whose square
is not countably compact.

o (Tomita '99) (MAcwie) There is a group whose square is countably compact
but the cube is not.

@ (van Douwen '80) Every countably compact Boolean group without (non-
trivial) convergent sequences contains two countably compact subgroups whose
product is not countably compact.

@ (Hajnal-Juhdsz '76) (CH) There is a countably compact Boolean group without
convergent sequences.
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Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent
sequences?
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van Douwen's problem — consistent solutions

Problem (van Douwen '80)

Is there a countably compact Boolean group without non-trivial convergent
sequences?

o (Kuz'minov '58) Every compact topological group contains a non-trivial con-
vergent sequence.

o (Hajnal-Juhasz '76) Yes assuming CH.
@ (van Douwen '80) Yes assuming MA.

o (Tomita, '99) Yes assuming MA pje.
°
°

(Garcia Ferreira-Tomita-Watson '05) Yes assuming the existence of a selective
ultrafilter. In fact, such group is p-compact.

o (Szeptycki-Tomita '09) Yes in the random real model.
All of these constructions describe subgroups of 2°.
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Main result

Theorem

non-trivial convergent sequences.

There is (in ZFC) a countably compact Boolean group (subgroup of 2¢) without
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Bohr group topologies

The Bohr topology on a group G is the weakest group topology making every
homomorphism ¢ € Hom(G,T) continuous.
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The Bohr topology on a group G is the weakest group topology making every
homomorphism ® € Hom(G,T) continuous. We let (G, Tgon,) denote G equipped
with the Bohr topology.

o (Folklore) If G is an Abelian group, then (G, Tgoh) is homeomorphic (and
isomorphic) to a subgroup of THo™(&.T) via the evaluation mapping.

Theorem

Let G be a (infinite) countable Abelian group. Then (G, Tgonr) has no (non-trivial)
convergent sequences.
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Bohr group topologies

The Bohr topology on a group G is the weakest group topology making every
homomorphism ® € Hom(G,T) continuous. We let (G, Tgon,) denote G equipped
with the Bohr topology.

o (Folklore) If G is an Abelian group, then (G, Tgoh) is homeomorphic (and
isomorphic) to a subgroup of THo™(G.T) via the evaluation mapping.

Theorem

Let G be a (infinite) countable Abelian group. Then (G, Tgonr) has no (non-trivial)
convergent sequences.

o (Folklore) Let X be a countably compact regular space without (non-trivial)
convergent sequences. Then every infinite subset of X has at least ¢ accumu-
lation points.
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Extensions of homomorphisms to ultrapowers

Given a group G and an ultrafilter p € w*, denote by

ult,(G) = (G)¥/ =, , where f =, g iff {n: f(n) = g(n)} € p.
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Extensions of homomorphisms to ultrapowers

Given a group G and an ultrafilter p € w*, denote by

ult,(G) = (G)¥/ =, , where f =, g iff {n: f(n) = g(n)} € p.

@ By tés theorem, ult,(G) is a group with the same first order properties as G.

@ There is a natural embedding of G into ult,(G) sending each g € G to the
equivalence class of the constant function with value g. We shall therefore

consider G as a subgroup of ult,(G).

Every € Hom(G,T) naturally extends to a homomorphism ® € (ult,(G), T) by

letting -
O([f]) = p-limpey, ®(f(n)).
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Extensions of homomorphisms to ultrapowers

Given a group G and an ultrafilter p € w*, denote by

ult,(G) = (G)¥/ =, , where f =, g iff {n: f(n) = g(n)} € p.

@ By tés theorem, ult,(G) is a group with the same first order properties as G.

@ There is a natural embedding of G into ult,(G) sending each g € G to the
equivalence class of the constant function with value g. We shall therefore
consider G as a subgroup of ult,(G).

Every € Hom(G,T) naturally extends to a homomorphism ® € (ult,(G), T) by
letting

O([f]) = p-limpe. ®(f(n)).

We let 755 denote the weakest topology making every ® continuous, where ® €
Hom(G,T).
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lterated ultrapowers

The process can, of course, be iterated: given a group G, an ultrafilter p € w* and
0<a<w let
ulty(G) = ulty(ult) (G)) if = B+ 1,
and
ulty(G) = J ultj(G) if o is limit.
0<B<a
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0<a<w let
ulty(G) = ulty(ult) (G)) if = B+ 1,
and
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0<fB<a

The group that will be relevant for us is the group ult;‘,’l(G), endowed with the topol-
0gY Tggny induced by the homomorphisms in ® € Hom(G, T) extended recursively
all the way to ult;*(G) by the same formula as before:

B([f]) = p-limpen ®(F(n)).

The (iterated) ultrapower with this topology is usually not Hausdorff, so we identify
the inseparable functions and denote by Ult,"(G) this quotient.
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lterated ultrapowers

The process can, of course, be iterated: given a group G, an ultrafilter p € w* and
0<a<w let
ulty(G) = ulty(ult) (G)) if = B+ 1,
and
ulty (G) = U uItfj(G) if « is limit.
0<fB<a
The group that will be relevant for us is the group uIt‘;,“(G), endowed with the topol-

0gY Tggny induced by the homomorphisms in ® € Hom(G, T) extended recursively
all the way to ult;*(G) by the same formula as before:

B([f]) = p-limpen ®(F(n)).

The (iterated) ultrapower with this topology is usually not Hausdorff, so we identify
the inseparable functions and denote by Ult,"(G) this quotient.

Fact
Ult;*(G) is a Hausdorff p-compact topological group. }
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The plan

Theorem

There is (in ZFC) a countably compact Boolean group (subgroup of 2¢) without
non-trivial convergent sequences.
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Theorem
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The plan

Theorem

There is (in ZFC) a countably compact Boolean group (subgroup of 2¢) without
non-trivial convergent sequences.

Fix an ultrafilter p € w* and consider Ult,"(G). There is a problem:

@ Does Ult,'(G) have (non-trivial) convergent sequences?

Theorem

For every countable Abelian group G there is an ultrafilter p € w* s.t. Ult,(G)
has a non-trivial convergent sequences.
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The plan works for selective ultrafilters and for ([w]<“, A)

Proposition

p is selective iff for every p-independent set {f,: n € w} of functions f,: w — [W]<¥,
there is a sequence (U,: n € w) C p such that f, | U, is one-to-one for every n € w
and {f,(m): n € w and m € U,} is linearly independent.
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The plan works for selective ultrafilters and for ([w]<¥, A)

Proposition

p is selective iff for every p-independent set {f,: n € w} of functions f,: w — [W]<¥,
there is a sequence (U,: n € w) C p such that f, | U, is one-to-one for every n € w
and {f,(m): n € w and m € U,} is linearly independent.

Given a non-empty set /, we shall call a set {f;: i € I} of functions f;: w — [w]<¥

p-independent if
{n: a—i—Zf,-(n) ZQ} ¢ p

icE

for every non-empty finite set E C | and every a € [w]<¥.
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The plan works for selective ultrafilters and for ([w]<¥, A)

Proposition

p is selective iff for every p-independent set {f,: n € w} of functions f,: w — [W]<¥,
there is a sequence (U,: n € w) C p such that f, | U, is one-to-one for every n € w
and {f,(m): n € w and m € U,} is linearly independent.

Given a non-empty set /, we shall call a set {f;: i € I} of functions f;: w — [w]<¥

p-independent if
{n: a—i—Zf,-(n) = @} ¢ p

i€cE

for every non-empty finite set E C | and every a € [w]<¥.

Corollary

If p is selective, then Ult," ([w]<“) is a Hausdorff p-compact topological group
without (non-trvial) convergent sequences.
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Different, yet the same
Lemma

There is a sequence (p,: & < ¢) C w* such that for every D € [c]* and every se-

quence (f,: « € D) C ([w]<*)* of one-to-one enumerations of linearly independent
sets there are (U, : a € D) such that

e U, € p, for every a € D, and
o {fy(n): « € D and n € U,} is a linearly independent subset of [w]<“.
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Different, yet the same

Lemma

There is a sequence (p,: & < ¢) C w* such that for every D € [c]* and every se-

quence (f,: « € D) C ([w]<*)* of one-to-one enumerations of linearly independent
sets there are (U, : a € D) such that

e U, € p, forevery a € D, and
o {fy(n): « € D and n € U,} is a linearly independent subset of [w]<“.

We shall construct a countably compact group topology on [¢c]<“ starting from
([w]=%, TBohr) as follows: fix an indexed family {f,: a € [w,¢)} C ([¢]<¥)% of
one-to-one sequences s.t.

Q for every infinite set X C [¢]<% there is an « € [w, ¢) with rng(f,) C X,

@ each £, is an enumeration of a linearly independent set, and
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Different, yet the same

Lemma

There is a sequence (p,: & < ¢) C w* such that for every D € [c]* and every se-
quence (f,: « € D) C ([w]<*)* of one-to-one enumerations of linearly independent
sets there are (U, : a € D) such that

e U, € p, forevery a € D, and
o {fy(n): « € D and n € U,} is a linearly independent subset of [w]<“.

We shall construct a countably compact group topology on [¢c]<“ starting from
([w]=%, TBohr) as follows: fix an indexed family {f,: a € [w,¢)} C ([¢]<¥)% of
one-to-one sequences s.t.

@ for every infinite set X C [c]<“ there is an « € [w, ¢) with rng(f,) C X,

@ each £, is an enumeration of a linearly independent set, and

@ rmg(fy) C [a]<¥ for every a € [w,¢).
For every ® € Hom([w]<%, T) = Hom([w]<%, 2) define its extension ® € Hom([¢]<%
,2) recursively by putting

6({&}) = pa'“mneua(fa(n))‘
with the group topology 75— induced by {®: ® € Hom([w]<%,2)} on [¢]<“.
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Different, yet the same

Call aset D € [¢]<* suitably closed if w € D and | J,,.,, fa(n) € D for every a € D.
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Different, yet the same

Call aset D € [¢]<* suitably closed if w € D and | J,,.,, fa(n) € D for every a € D.
Proposition

The group topology Tg;- contains no non-trivial convergent sequences iff
VD € [¢]¥ suitably closed VX € [D]* 3¥ € Hom([D]<¥,?2) s.t.

Q Va € D V({a}) = pa-limne,V(fy(n)), and

Q | XNKer(V)| =|X\ Ker(V)| = w.
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Different, yet the same

Call aset D € [¢]<* suitably closed if w € D and | J,,.,, fa(n) € D for every a € D.

Proposition
The group topology Tg;- contains no non-trivial convergent sequences iff
VD € [¢]¥ suitably closed VX € [D]* 3¥ € Hom([D]<¥,?2) s.t.

Q Va € D V({a}) = pa-limne,V(fy(n)), and

Q | XNKer(V)| =|X\ Ker(V)| = w.

Now, if this happens (and it does by our choice of the ultrafilters) then, in particular,

K= N Ker({®)

deHom([w]<w,2)

is finite, and [¢]<“ /K with the quotient topology is the Hausdorff countably compact
group without non-trivial convergent sequences we want.
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Final remarks and questions
Theorem

For every n € w there is a group G such that G" is countably compact while G"+1
is not.
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Final remarks and questions

Theorem

For every n € w there is a group G such that G" is countably compact while G"*
is not.
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Questions

@ s there a countably compact group G without convergent sequences which is
not a torsion group, i.e., contains a copy of Z?

@ (Wallace '55) Is there a Hausdorff countably compact semigroup with both-
sided cancellation which is not a topological group?

v

Yes to 1 implies Yes to 2.

Questions

@ Is there consistently a countably compact group G without convergent se-
quences of weight less than ¢?

@ Is there (in ZFC) a p-compact group G without convergent sequences?

o Is there (in ZFC) a p € w* and a group G s.t. Ult,(G) has no (non-trivial)
convergent sequences?
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Thank you for your attention!
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