Winter School 2019

January 26th-February 2nd 2019 Hejnice, Czech Republic

Invited speakers

- James Cummings
- Miroslav Hušek
- Wiesław Kubiś
- Jordi Lopez-Abad

www.winterschool.eu

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Logic Colloquium 2019

August 11th-16th 2019, Prague, Czech Republic

www.lc2019.cz

▲□▶▲□▶▲□▶▲□▶ □ のQで

Program Committee

- Andrew Arana
- Lev Beklemishev (chair)
- Agata Ciabattoni
- Russell Miller
- Martin Otto
- Pavel Pudlák
- Stevo Todorčević
- Alex Wilkie

David Chodounský

Institute of Mathematics CAS

joint work with Vera Fischer and Jan Grebík

Free sequences in topological spaces

A sequence of points $\langle x_{\alpha} | \alpha < \gamma \rangle$ in a topological space is a free sequence if the topological closure of $\langle x_{\alpha} | \alpha < \beta \rangle$ is disjoint from the topological closure of $\langle x_{\alpha} | \beta \leq \alpha < \gamma \rangle$ for each $\beta \leq \gamma$.

Free sequences in topological spaces

A sequence of points $\langle x_{\alpha} | \alpha < \gamma \rangle$ in a topological space is a free sequence if the topological closure of $\langle x_{\alpha} | \alpha < \beta \rangle$ is disjoint from the topological closure of $\langle x_{\alpha} | \beta \leq \alpha < \gamma \rangle$ for each $\beta \leq \gamma$.

- Introduced by Alexander Arhangel'skii.
- Related to the tightness of the space of the space.
- Used to prove $|X| \leq 2^{\chi(X)L(X)}$.

Free sequences in Boolean algebras For $a \in \mathbf{B}$ denote $a^0 = \mathbf{1} - a$ and $a^1 = a$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

For $a \in \mathbf{B}$ denote $a^0 = \mathbf{1} - a$ and $a^1 = a$.

Definition (Don Monk)

Sequence $A = \langle a_{\alpha} | \alpha \in \gamma \rangle$ of elements of **B** of ordinal length γ is a *free sequence* if the family $C_{\beta} = \{ a_{\alpha}^{1} | \alpha < \beta \} \cup \{ a_{\alpha}^{0} | \beta \leq \alpha < \gamma \}$ is centered for each $\beta \leq \gamma$.

For $a \in \mathbf{B}$ denote $a^0 = \mathbf{1} - a$ and $a^1 = a$.

Definition (Don Monk)

Sequence $A = \langle a_{\alpha} | \alpha \in \gamma \rangle$ of elements of **B** of ordinal length γ is a *free sequence* if the family $C_{\beta} = \{ a_{\alpha}^{1} | \alpha < \beta \} \cup \{ a_{\alpha}^{0} | \beta \leq \alpha < \gamma \}$ is centered for each $\beta \leq \gamma$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A free sequence is *maximal* if it is maximal with respect to end-extension.

For $a \in \mathbf{B}$ denote $a^0 = \mathbf{1} - a$ and $a^1 = a$.

Definition (Don Monk)

Sequence $A = \langle a_{\alpha} | \alpha \in \gamma \rangle$ of elements of **B** of ordinal length γ is a *free sequence* if the family $C_{\beta} = \{ a_{\alpha}^{1} | \alpha < \beta \} \cup \{ a_{\alpha}^{0} | \beta \leq \alpha < \gamma \}$ is centered for each $\beta \leq \gamma$.

A free sequence is *maximal* if it is maximal with respect to end-extension.

Monk studied the cardinal spectrum of cardinalities of maximal free sequences for a given **B**.

 $f(\mathbf{B}) = \min\{ |A| \mid A \text{ is a maximal free sequence in } \mathbf{B} \}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question (Monk)

What is the relation of $f(\mathbf{B})$ and $\mathfrak{u}(\mathbf{B})$?

Definition (Don Monk)

Sequence $A = \langle a_{\alpha} | \alpha \in \gamma \rangle$ of elements of **B** of ordinal length γ is a *free sequence* if the family $C_{\beta} = \{ a_{\alpha}^{1} | \alpha < \beta \} \cup \{ a_{\alpha}^{0} | \beta \leq \alpha < \gamma \}$ is centered for each $\beta \leq \gamma$.

A free sequence is *maximal* if it is maximal with respect to end-extension.

Monk studied the cardinal spectrum of cardinalities of maximal free sequences for a given **B**.

 $\mathfrak{f}(\mathbf{B}) = \min\{ |A| \mid A \text{ is a maximal free sequence in } \mathbf{B} \}$

Question (Monk)

What is the relation of f(B) and u(B)?

Theorem (K. Selker)

It is consistent that there is **B** such that $\omega = f(\mathbf{B}) < \mathfrak{u}(\mathbf{B}) = \omega_1$ (and CH).

Let A be a free sequence in $\mathcal{P}(\omega)/\mathrm{fin.}$ Denote

$$\operatorname{comb}(A) = \left\{ \bigcap_{\alpha \in \Gamma} a_{\alpha} \cap \bigcap_{\alpha \in \Delta} a_{\alpha}^{0} \mid \Gamma, \Delta \in [\gamma]^{<\omega}, \Gamma < \Delta \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let A be a free sequence in $\mathcal{P}(\omega)/\mathrm{fin}.$ Denote

$$\operatorname{comb}(A) = \left\{ \bigcap_{\alpha \in \Gamma} a_{\alpha} \cap \bigcap_{\alpha \in \Delta} a_{\alpha}^{0} \mid \Gamma, \Delta \in [\gamma]^{<\omega}, \Gamma < \Delta \right\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Every strictly \subset^* descending sequence is a free sequence.

Let A be a free sequence in $\mathcal{P}(\omega)/\text{fin}$. Denote

$$\operatorname{comb}(A) = \Bigg\{ \bigcap_{\alpha \in \Gamma} a_{\alpha} \cap \bigcap_{\alpha \in \Delta} a_{\alpha}^{0} \mid \Gamma, \Delta \in [\gamma]^{<\omega}, \Gamma < \Delta \Bigg\}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Every strictly \subset^* descending sequence is a free sequence. If a free sequence *A* generates an ultrafilter, then *A* is maximal.

Let A be a free sequence in $\mathcal{P}(\omega)/\text{fin}$. Denote

$$\operatorname{comb}(A) = \Bigg\{ \bigcap_{\alpha \in \Gamma} a_{\alpha} \cap \bigcap_{\alpha \in \Delta} a_{\alpha}^{0} \mid \Gamma, \Delta \in [\gamma]^{<\omega}, \Gamma < \Delta \Bigg\}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Every strictly \subset^* descending sequence is a free sequence.

If a free sequence A generates an ultrafilter, then A is maximal.

Lemma

There is a free sequence which does not generate an ultrafilter.

Let A be a free sequence in $\mathcal{P}(\omega)/\text{fin}$. Denote

$$\operatorname{comb}(A) = \Bigg\{ \bigcap_{\alpha \in \Gamma} a_{\alpha} \cap \bigcap_{\alpha \in \Delta} a_{\alpha}^{0} \mid \Gamma, \Delta \in [\gamma]^{<\omega}, \Gamma < \Delta \Bigg\}.$$

Every strictly \subset^* descending sequence is a free sequence. If a free sequence A generates an ultrafilter, then A is maximal.

Lemma

There is a free sequence which does not generate an ultrafilter.

Assume $\omega = X \cup Y$, $A = \langle a_{\alpha} \subset X | \alpha \in \gamma \rangle$, $B = \langle b_{\alpha} \subset Y | \alpha \in \gamma \rangle$ are maximal free sequences.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For
$$\langle \alpha, i \rangle \in \gamma \times 2$$
 let $c_{\alpha,i} = a_{\alpha} \cup b_{\alpha+i}$.
 $C = \langle c_{\alpha,i} | \langle \alpha, i \rangle \in \gamma \times 2 \rangle$ is a maximal free sequence.

Let A be a free sequence in $\mathcal{P}(\omega)/\text{fin}$. Denote

$$\operatorname{comb}(A) = \Bigg\{ \bigcap_{\alpha \in \Gamma} a_{\alpha} \cap \bigcap_{\alpha \in \Delta} a_{\alpha}^{0} \mid \Gamma, \Delta \in [\gamma]^{<\omega}, \Gamma < \Delta \Bigg\}.$$

Every strictly \subset^* descending sequence is a free sequence.

If a free sequence A generates an ultrafilter, then A is maximal.

Lemma

There is a free sequence which does not generate an ultrafilter.

Assume $\omega = X \cup Y$, $A = \langle a_{\alpha} \subset X | \alpha \in \gamma \rangle$, $B = \langle b_{\alpha} \subset Y | \alpha \in \gamma \rangle$ are maximal free sequences.

For
$$\langle \alpha, i \rangle \in \gamma \times 2$$
 let $c_{\alpha,i} = a_{\alpha} \cup b_{\alpha+i}$.
 $C = \langle c_{\alpha,i} | \langle \alpha, i \rangle \in \gamma \times 2 \rangle$ is a maximal free sequence.

Lemma

The length of a maximal free sequence may not be a limit ordinal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cardinality considerations

 $\mathcal{X} \subset [\omega]^{\omega}$ is an independent system if for every function $f : \mathcal{X} \to 2$ is the family $\left\{ a^{f(a)} \mid a \in \mathcal{X} \right\}$ centered.

 $i = \min\{ |\mathcal{X}| \mid \mathcal{X} \text{ is a maximal independent system } \}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Cardinality considerations

 $\mathcal{X} \subset [\omega]^{\omega}$ is an independent system if for every function $f : \mathcal{X} \to 2$ is the family $\left\{ a^{f(a)} \mid a \in \mathcal{X} \right\}$ centered.

 $\mathfrak{i} = \min\{ |\mathcal{X}| \mid \mathcal{X} \text{ is a maximal independent system } \}$

 $\mathcal{R} \subset [\omega]^{\omega}$ is a reaping family if for every $a \in [\omega]^{\omega}$ there is $r \in \mathcal{R}$ such that $r \subset^* a$ or $r \cap a =^* \emptyset$.

 $\mathfrak{r} = \min\{ |\mathcal{R}| \mid \mathcal{R} \text{ is a reaping family } \}$

Cardinality considerations

 $\mathcal{X} \subset [\omega]^{\omega}$ is an independent system if for every function $f : \mathcal{X} \to 2$ is the family $\left\{ a^{f(a)} \mid a \in \mathcal{X} \right\}$ centered.

 $\mathfrak{i} = \min\{ |\mathcal{X}| \mid \mathcal{X} \text{ is a maximal independent system } \}$

 $\mathcal{R} \subset [\omega]^{\omega}$ is a reaping family if for every $a \in [\omega]^{\omega}$ there is $r \in \mathcal{R}$ such that $r \subset^* a$ or $r \cap a =^* \emptyset$.

 $\mathfrak{r} = \min\{ |\mathcal{R}| \mid \mathcal{R} \text{ is a reaping family } \}$

 $\mathfrak{u} = \min\{ |\mathcal{V}| \mid \mathcal{V} \text{ is an ultrafilter base } \}$

The character $\chi(\mathcal{U})$ of \mathcal{U} is the minimal cardinality of a base of \mathcal{U} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ · ○ ○ ○

The character $\chi(\mathcal{U})$ of \mathcal{U} is the minimal cardinality of a base of \mathcal{U} . The π -character $\pi\chi(\mathcal{U})$ is the minimal cardinality of a π -base of \mathcal{U} . $\mathcal{B} \subset [\omega]^{\omega}$ is a π -base of \mathcal{U} for each $U \in \mathcal{U}$ there is $B \in \mathcal{B}$, $B \subset^* \mathcal{U}$.

The character $\chi(\mathcal{U})$ of \mathcal{U} is the minimal cardinality of a base of \mathcal{U} . The π -character $\pi\chi(\mathcal{U})$ is the minimal cardinality of a π -base of \mathcal{U} . $\mathcal{B} \subset [\omega]^{\omega}$ is a π -base of \mathcal{U} for each $U \in \mathcal{U}$ there is $B \in \mathcal{B}$, $B \subset^* \mathcal{U}$.

 $\mathfrak{u}^* = \min\{\chi(\mathcal{U}) \mid \mathcal{U} \text{ is an ultrafilter such that } \chi(\mathcal{U}) = \pi\chi(\mathcal{U})\}$

- コン・4回シュービン・4回シューレー

The character $\chi(\mathcal{U})$ of \mathcal{U} is the minimal cardinality of a base of \mathcal{U} . The π -character $\pi\chi(\mathcal{U})$ is the minimal cardinality of a π -base of \mathcal{U} . $\mathcal{B} \subset [\omega]^{\omega}$ is a π -base of \mathcal{U} for each $U \in \mathcal{U}$ there is $B \in \mathcal{B}$, $B \subset^* \mathcal{U}$.

 $\mathfrak{u}^* = \min\{ \chi(\mathcal{U}) \mid \mathcal{U} \text{ is an ultrafilter such that } \chi(\mathcal{U}) = \pi \chi(\mathcal{U}) \}$

Question (Brendle-Shelah)

Does there exist an ultrafilter \mathcal{U} such that $\chi(\mathcal{U}) = \pi \chi(\mathcal{U})$?

The character $\chi(\mathcal{U})$ of \mathcal{U} is the minimal cardinality of a base of \mathcal{U} . The π -character $\pi\chi(\mathcal{U})$ is the minimal cardinality of a π -base of \mathcal{U} . $\mathcal{B} \subset [\omega]^{\omega}$ is a π -base of \mathcal{U} for each $U \in \mathcal{U}$ there is $B \in \mathcal{B}$, $B \subset^* \mathcal{U}$.

 $\mathfrak{u}^* = \min\{ \chi(\mathcal{U}) \mid \mathcal{U} \text{ is an ultrafilter such that } \chi(\mathcal{U}) = \pi \chi(\mathcal{U}) \}$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Question (Brendle-Shelah)

Does there exist an ultrafilter \mathcal{U} such that $\chi(\mathcal{U}) = \pi \chi(\mathcal{U})$?

Theorem (Bell-Kunen)

There is (in ZFC) an ultrafilter \mathcal{U} such that $\pi \chi(\mathcal{U}) = \operatorname{cof} \mathfrak{c}$.

The character $\chi(\mathcal{U})$ of \mathcal{U} is the minimal cardinality of a base of \mathcal{U} . The π -character $\pi\chi(\mathcal{U})$ is the minimal cardinality of a π -base of \mathcal{U} . $\mathcal{B} \subset [\omega]^{\omega}$ is a π -base of \mathcal{U} for each $U \in \mathcal{U}$ there is $B \in \mathcal{B}$, $B \subset^* \mathcal{U}$.

 $\mathfrak{u}^* = \min\{ \chi(\mathcal{U}) \mid \mathcal{U} \text{ is an ultrafilter such that } \chi(\mathcal{U}) = \pi \chi(\mathcal{U}) \}$

Question (Brendle-Shelah)

Does there exist an ultrafilter \mathcal{U} such that $\chi(\mathcal{U}) = \pi \chi(\mathcal{U})$?

Theorem (Bell–Kunen)

There is (in ZFC) *an ultrafilter* \mathcal{U} *such that* $\pi \chi(\mathcal{U}) = \operatorname{cof} \mathfrak{c}$ *.*

Theorem (Balcar-Simon)

 $\mathfrak{r} = \min\{\pi\chi(\mathcal{U}) \mid \mathcal{U} \text{ is a non-principal ultrafilter}\}$

- ▶ r ≤ i
- $\blacktriangleright \ \mathfrak{r} \leq \mathfrak{u} \leq \mathfrak{u}^*$
- If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{u}^* = \mathfrak{u}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- ▶ $r \leq i$
- $\blacktriangleright \ \mathfrak{r} \leq \mathfrak{u} \leq \mathfrak{u}^*$
- If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{u}^* = \mathfrak{u}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

 $\mathfrak{f}=\mathfrak{f}(\mathcal{P}(\omega)/\mathsf{fin})$

▶ $r \leq i$

•
$$\mathfrak{r} \leq \mathfrak{u} \leq \mathfrak{u}^*$$

• If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{u}^* = \mathfrak{u}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$\mathfrak{f} = \mathfrak{f}(\mathcal{P}(\omega)/\mathsf{fin})$$

Lemma

 $\mathfrak{r} \leq \mathfrak{f} \leq \mathfrak{u}^*$

- $\mathfrak{r} \leq \mathfrak{i}$
- $\blacktriangleright \ \mathfrak{r} \leq \mathfrak{u} \leq \mathfrak{u}^*$
- If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{u}^* = \mathfrak{u}$.
- $\mathfrak{f}=\mathfrak{f}(\mathcal{P}(\omega)/\mathsf{fin})$

Lemma

 $\mathfrak{r} \leq \mathfrak{f} \leq \mathfrak{u}^*$

If A is a maximal free sequence, then comb(A) is a reaping family.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ $r \leq i$

•
$$\mathfrak{r} \leq \mathfrak{u} \leq \mathfrak{u}^*$$

• If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{u}^* = \mathfrak{u}$.

 $\mathfrak{f}=\mathfrak{f}(\mathcal{P}(\omega)/\mathsf{fin})$

Lemma

 $\mathfrak{r} \leq \mathfrak{f} \leq \mathfrak{u}^*$

Corollary

If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{f} = \mathfrak{u} = \mathfrak{r}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▶ $r \leq i$

•
$$\mathfrak{r} \leq \mathfrak{u} \leq \mathfrak{u}^*$$

• If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{u}^* = \mathfrak{u}$.

 $\mathfrak{f}=\mathfrak{f}(\mathcal{P}(\omega)/\mathsf{fin})$

Lemma

 $\mathfrak{r} \leq \mathfrak{f} \leq \mathfrak{u}^*$

Corollary

If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{f} = \mathfrak{u} = \mathfrak{r}$.

Observation

Miller model: $\omega_1 = \mathfrak{u} = \mathfrak{f} < \mathfrak{i} = \mathfrak{c} = \omega_2$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

▶ $r \leq i$

•
$$\mathfrak{r} \leq \mathfrak{u} \leq \mathfrak{u}^*$$

• If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{u}^* = \mathfrak{u}$.

 $\mathfrak{f}=\mathfrak{f}(\mathcal{P}(\omega)/\mathsf{fin})$

Lemma

 $\mathfrak{r} \leq \mathfrak{f} \leq \mathfrak{u}^*$

Corollary

If $\mathfrak{r} = \mathfrak{u}$, then $\mathfrak{f} = \mathfrak{u} = \mathfrak{r}$.

Observation

Miller model: $\omega_1 = \mathfrak{u} = \mathfrak{f} < \mathfrak{i} = \mathfrak{c} = \omega_2$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Is i < f consistent with ZFC? What about r < f? u < f?

Theorem

 $\mathfrak{i} = \mathfrak{f} < \mathfrak{u}$ is consistent with ZFC.

Theorem

 $\mathfrak{i} = \mathfrak{f} < \mathfrak{u}$ is consistent with ZFC.

Denote $C_{\kappa} = \{ h: \kappa \to 2 \mid |h| < \omega \}$ ordered by reverse inclusion.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

i = f < u is consistent with ZFC.

Denote $\mathbf{C}_{\kappa} = \{ h: \kappa \to 2 \mid |h| < \omega \}$ ordered by reverse inclusion. A forcing **P** is s *Cohen-preserving* if for each dense $D \subset \mathbf{C}_{\kappa}, D \in V[G]$ exists $C \in V$ which refines D.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Theorem

i = f < u is consistent with ZFC.

Denote $\mathbf{C}_{\kappa} = \{ h: \kappa \to 2 \mid |h| < \omega \}$ ordered by reverse inclusion. A forcing **P** is s *Cohen-preserving* if for each dense $D \subset \mathbf{C}_{\kappa}, D \in V[G]$ exists $C \in V$ which refines D.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Proposition (A. Miller)

If **P** is a proper forcing with the Sacks property, then **P** is Cohen-preserving.

Let $\mathcal{A} \subset \mathcal{P}(\omega)$ be an independent system. For $h \in \mathbf{C}_{\mathcal{A}}$ let $\mathcal{A}^h = \bigcap \{ A^{h(\mathcal{A})} \mid \mathcal{A} \in \text{dom } h \}$. For $X \subseteq \omega$ say that $h \in \mathbf{C}_{\mathcal{A}}$ reaps X if either $\mathcal{A}^h \subset^* X$ or $\mathcal{A}^h \cap X =^* \emptyset$. If $\mathcal{A}^h \subset^* X$, say that h hits X.

The independent system A is maximal iff { h + h reaps X } is nonempty for each $X \subseteq \omega$.

Let $\mathcal{A} \subset \mathcal{P}(\omega)$ be an independent system. For $h \in \mathbf{C}_{\mathcal{A}}$ let $\mathcal{A}^h = \bigcap \{ \mathcal{A}^{h(\mathcal{A})} \mid \mathcal{A} \in \text{dom } h \}$. For $X \subseteq \omega$ say that $h \in \mathbf{C}_{\mathcal{A}}$ reaps X if either $\mathcal{A}^h \subset^* X$ or $\mathcal{A}^h \cap X =^* \emptyset$. If $\mathcal{A}^h \subset^* X$, say that h hits X.

The independent system A is maximal iff { h + h reaps X } is nonempty for each $X \subseteq \omega$.

Definition (Goldstern-Shelah)

An independent system \mathcal{A} is *dense* if the set { h + h reaps X } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observation

A dense independent system is maximal.

Let $\mathcal{A} \subset \mathcal{P}(\omega)$ be an independent system. For $h \in \mathbf{C}_{\mathcal{A}}$ let $\mathcal{A}^h = \bigcap \{ \mathcal{A}^{h(\mathcal{A})} \mid \mathcal{A} \in \text{dom } h \}$. For $X \subseteq \omega$ say that $h \in \mathbf{C}_{\mathcal{A}}$ reaps X if either $\mathcal{A}^h \subset^* X$ or $\mathcal{A}^h \cap X =^* \emptyset$. If $\mathcal{A}^h \subset^* X$, say that h hits X.

The independent system A is maximal iff { h + h reaps X } is nonempty for each $X \subseteq \omega$.

Definition (Goldstern-Shelah)

An independent system \mathcal{A} is *dense* if the set { h + h reaps X } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

Observation

A dense independent system is maximal.

Proposition (Goldstern-Shelah)

For each maximal independent system \mathcal{A} there exists $h \in \mathbf{C}_{\mathcal{A}}$ such that $\mathcal{A} \upharpoonright \mathcal{A}^{h}$ is a dense independent system.

For $h \in \mathbf{C}_{\mathcal{A}}$ let $\mathcal{A}^{h} = \bigcap \{ A^{h(\mathcal{A})} \mid A \in \text{dom } h \}$. For $X \subseteq \omega$ say that $h \in \mathbf{C}_{\mathcal{A}}$ reaps X if either $\mathcal{A}^{h} \subset^{*} X$ or $\mathcal{A}^{h} \cap X =^{*} \emptyset$. If $\mathcal{A}^{h} \subset^{*} X$, say that h hits X. The independent system \mathcal{A} is maximal iff $\{ h \mid h \text{ reaps } X \}$ is nonempty for each $X \subseteq \omega$.

Definition (Goldstern-Shelah)

An independent system \mathcal{A} is *dense* if the set { h + h reaps X } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

 $\mathscr{F}_{\mathcal{A}}$ be a filter defined by $F \in \mathscr{F}_{\mathcal{A}}$ iff $\{h \mid h \text{ hits } F\}$ is dense in $\mathbf{C}_{\mathcal{A}}$.

For $h \in \mathbf{C}_{\mathcal{A}}$ let $\mathcal{A}^{h} = \bigcap \{ A^{h(\mathcal{A})} \mid A \in \text{dom } h \}$. For $X \subseteq \omega$ say that $h \in \mathbf{C}_{\mathcal{A}}$ reaps X if either $\mathcal{A}^{h} \subset^{*} X$ or $\mathcal{A}^{h} \cap X =^{*} \emptyset$. If $\mathcal{A}^{h} \subset^{*} X$, say that h hits X. The independent system \mathcal{A} is maximal iff $\{ h \mid h \text{ reaps } X \}$ is nonempty for each $X \subseteq \omega$.

Definition (Goldstern-Shelah)

An independent system \mathcal{A} is *dense* if the set { h + h reaps X } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

 $\mathscr{F}_{\mathcal{A}}$ be a filter defined by $F \in \mathscr{F}_{\mathcal{A}}$ iff $\{h \mid h \text{ hits } F\}$ is dense in $\mathbf{C}_{\mathcal{A}}$. Let $\mathscr{C}_{\mathcal{A}} = \{\omega \setminus \mathcal{A}^h \mid h \in \mathbf{C}_{\mathcal{A}}\}.$

For $h \in \mathbf{C}_{\mathcal{A}}$ let $\mathcal{A}^{h} = \bigcap \{ A^{h(\mathcal{A})} \mid A \in \text{dom } h \}$. For $X \subseteq \omega$ say that $h \in \mathbf{C}_{\mathcal{A}}$ reaps X if either $\mathcal{A}^{h} \subset^{*} X$ or $\mathcal{A}^{h} \cap X =^{*} \emptyset$. If $\mathcal{A}^{h} \subset^{*} X$, say that h hits X. The independent system \mathcal{A} is maximal iff $\{ h \mid h \text{ reaps } X \}$ is nonempty for each $X \subseteq \omega$.

Definition (Goldstern-Shelah)

An independent system \mathcal{A} is *dense* if the set { h + h reaps X } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

 $\mathscr{F}_{\mathcal{A}}$ be a filter defined by $F \in \mathscr{F}_{\mathcal{A}}$ iff $\{h \mid h \text{ hits } F\}$ is dense in $\mathbf{C}_{\mathcal{A}}$. Let $\mathscr{C}_{\mathcal{A}} = \{\omega \setminus \mathcal{A}^h \mid h \in \mathbf{C}_{\mathcal{A}}\}.$

Lemma

An independent system \mathcal{A} is dense iff $\mathcal{P}(\omega) \setminus \mathscr{F}_{\mathcal{A}}$ is generated by $\mathscr{C}_{\mathcal{A}}$.

An independent system \mathcal{A} is *dense* if the set { $h \mid h \text{ reaps } X$ } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

 $\mathscr{F}_{\mathcal{A}}$ be a filter defined by $F \in \mathscr{F}_{\mathcal{A}}$ iff $\{h \mid h \text{ hits } F\}$ is dense in $\mathbb{C}_{\mathcal{A}}$. Let $\mathscr{C}_{\mathcal{A}} = \{\omega \setminus \mathcal{A}^h \mid h \in \mathbb{C}_{\mathcal{A}}\}.$

Lemma

An independent system \mathcal{A} is dense iff $\mathcal{P}(\omega) \setminus \mathscr{F}_{\mathcal{A}}$ is generated by $\mathscr{C}_{\mathcal{A}}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An independent system \mathcal{A} is *dense* if the set { $h \mid h \text{ reaps } X$ } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

 $\mathscr{F}_{\mathcal{A}}$ be a filter defined by $F \in \mathscr{F}_{\mathcal{A}}$ iff $\{h \mid h \text{ hits } F\}$ is dense in $\mathbb{C}_{\mathcal{A}}$. Let $\mathscr{C}_{\mathcal{A}} = \{\omega \setminus \mathcal{A}^h \mid h \in \mathbb{C}_{\mathcal{A}}\}.$

Lemma

An independent system \mathcal{A} is dense iff $\mathcal{P}(\omega) \setminus \mathscr{F}_{\mathcal{A}}$ is generated by $\mathscr{C}_{\mathcal{A}}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let **P** be a Cohen-preserving forcing.

An independent system \mathcal{A} is *dense* if the set { $h \mid h \text{ reaps } X$ } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

 $\mathscr{F}_{\mathcal{A}}$ be a filter defined by $F \in \mathscr{F}_{\mathcal{A}}$ iff $\{h \mid h \text{ hits } F\}$ is dense in $\mathbb{C}_{\mathcal{A}}$. Let $\mathscr{C}_{\mathcal{A}} = \{\omega \setminus \mathcal{A}^h \mid h \in \mathbb{C}_{\mathcal{A}}\}.$

Lemma

An independent system \mathcal{A} is dense iff $\mathcal{P}(\omega) \setminus \mathscr{F}_{\mathcal{A}}$ is generated by $\mathscr{C}_{\mathcal{A}}$.

Let **P** be a Cohen-preserving forcing. The set $\mathscr{C}_{\mathcal{A}}$ is absolute, the filter $(\mathscr{F}_{\mathcal{A}})^{V[C]}$ is generated by $(\mathscr{F}_{\mathcal{A}})^{V}$.

An independent system \mathcal{A} is *dense* if the set { h + h reaps X } is dense in $\mathbb{C}_{\mathcal{A}}$ for each $X \subseteq \omega$.

 $\mathscr{F}_{\mathcal{A}}$ be a filter defined by $F \in \mathscr{F}_{\mathcal{A}}$ iff $\{h \mid h \text{ hits } F\}$ is dense in $\mathbf{C}_{\mathcal{A}}$. Let $\mathscr{C}_{\mathcal{A}} = \{\omega \setminus \mathcal{A}^h \mid h \in \mathbf{C}_{\mathcal{A}}\}.$

Lemma

An independent system \mathcal{A} is dense iff $\mathcal{P}(\omega) \setminus \mathscr{F}_{\mathcal{A}}$ is generated by $\mathscr{C}_{\mathcal{A}}$.

Let **P** be a Cohen-preserving forcing. The set $\mathscr{C}_{\mathcal{A}}$ is absolute, the filter $(\mathscr{F}_{\mathcal{A}})^{V[G]}$ is generated by $(\mathscr{F}_{\mathcal{A}})^{V}$.

To show that \mathcal{A} is preserved as a maximal independent system in V[G] it is sufficient to show that $\mathscr{C}_{\mathcal{A}}$ generates $\mathcal{P}(\omega) \setminus (\mathscr{F}_{\mathcal{A}})^{V}$ in V[G].

Let *B* be a free sequence, A be a dense independent system. We say *B* is *associated with* A if *B* is maximal, and *B* generates \mathscr{F}_A .

Let *B* be a free sequence, A be a dense independent system. We say *B* is *associated with* A if *B* is maximal, and *B* generates \mathscr{F}_A .

Proposition

Let B be a free sequence associated with A, **P** be a Cohen-preserving forcing, preserving A as a dense independent system. Then in V[G] the sequence B remains to be associated with A (i.e. maximal).

Let *B* be a free sequence, A be a dense independent system. We say *B* is *associated with* A if *B* is maximal, and *B* generates \mathscr{F}_A .

Proposition

Let B be a free sequence associated with A, **P** be a Cohen-preserving forcing, preserving A as a dense independent system. Then in V[G] the sequence B remains to be associated with A (i.e. maximal).

Proposition

Assume CH. There exists a selective dense independent system A and a free sequence B associated with A.

Let *B* be a free sequence, A be a dense independent system. We say *B* is *associated with* A if *B* is maximal, and *B* generates \mathscr{F}_A .

Proposition

Let B be a free sequence associated with A, P be a Cohen-preserving forcing, preserving A as a dense independent system. Then in V[G] the sequence B remains to be associated with A (i.e. maximal).

Proposition

Assume CH. There exists a selective dense independent system A and a free sequence B associated with A.

Theorem (Shelah)

Let \mathcal{U} be a non-principal ultrafilter. There exists a proper, Sacks property (i.e. Cohen-preserving) forcing $\mathbf{P}_{\mathcal{U}}$ which destroys \mathcal{U} (as an ultrafilter base) and preserves selective dense independent systems.