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Free sequences in topological spaces

A sequence of points 〈 xα p α < γ 〉 in a topological space is a free
sequence if the topological closure of 〈 xα p α < β 〉 is disjoint from
the topological closure of 〈 xα p β ≤ α < γ 〉 for each β ≤ γ.

I Introduced by Alexander Arhangel’skiı̆.
I Related to the tightness of the space of the space.
I Used to prove |X | ≤ 2χ(X)L(X).
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Free sequences in Boolean algebras
For a ∈ B denote a0 = 1− a and a1 = a.

Definition (Don Monk)
Sequence A = 〈 aα p α ∈ γ 〉 of elements of B of ordinal length γ is a
free sequence if the family Cβ =

{
a1
α p α < β

}
∪
{

a0
α p β ≤ α < γ

}
is centered for each β ≤ γ.
A free sequence is maximal if it is maximal with respect to
end-extension.
Monk studied the cardinal spectrum of cardinalities of maximal free
sequences for a given B.

f(B) = min{ |A| p A is a maximal free sequence in B }

�estion (Monk)
What is the relation of f(B) and u(B)?

Theorem (K. Selker)
It is consistent that there is B such that ω = f(B) < u(B) = ω1

(and CH).
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Free sequences in P(ω)/fin
Let A be a free sequence in P(ω)/fin.
Denote

comb(A) =

{ ⋂
α∈Γ

aα ∩
⋂
α∈∆

a0
α p Γ,∆ ∈ [γ]<ω, Γ < ∆

}
.

Every strictly ⊂∗ descending sequence is a free sequence.

If a free sequence A generates an ultrafilter, then A is maximal.

Lemma
There is a free sequence which does not generate an ultrafilter.

Assume ω = X ∪ Y , A = 〈 aα ⊂ X p α ∈ γ 〉, B = 〈 bα ⊂ Y p α ∈ γ 〉
are maximal free sequences.
For 〈α, i 〉 ∈ γ × 2 let cα,i = aα ∪ bα+i .
C = 〈 cα,i p 〈α, i 〉 ∈ γ × 2 〉 is a maximal free sequence.

Lemma
The length of a maximal free sequence may not be a limit ordinal.
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Cardinality considerations

X ⊂ [ω]ω is an independent system if for every function f : X → 2 is
the family

{
af (a) p a ∈ X

}
centered.

i = min{ |X | p X is a maximal independent system }

R ⊂ [ω]ω is a reaping family if for every a ∈ [ω]ω there is r ∈ R such
that r ⊂∗ a or r ∩ a =∗ ∅.

r = min{ |R| p R is a reaping family }

u = min{ |V| p V is an ultrafilter base }
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Let U be a non-principal ultrafilter.

The character χ(U) of U is the minimal cardinality of a base of U .

The π-character πχ(U) is the minimal cardinality of a π-base of U .

B ⊂ [ω]ω is a π-base of U for each U ∈ U there is B ∈ B, B ⊂∗ U.

u∗ = min{χ(U) p U is an ultrafilter such that χ(U) = πχ(U) }

�estion (Brendle–Shelah)
Does there exist an ultrafilter U such that χ(U) = πχ(U)?

Theorem (Bell–Kunen)
There is (in ZFC) an ultrafilter U such that πχ(U) = cof c.

Theorem (Balcar–Simon)
r = min{πχ(U) p U is a non-principal ultrafilter }
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Fact

I r ≤ i

I r ≤ u ≤ u∗

I If r = u, then u∗ = u.

f = f(P(ω)/fin)

Lemma
r ≤ f ≤ u∗

Corollary
If r = u, then f = u = r.

Observation
Miller model: ω1 = u = f < i = c = ω2.

�estion
Is i < f consistent with ZFC?
What about r < f? u < f?
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Consistency of i = f < u – Shelah’s model for i < u

Theorem
i = f < u is consistent with ZFC.

Denote Cκ = { h : κ→ 2 p |h| < ω } ordered by reverse inclusion.
A forcing P is s Cohen-preserving if for each dense D ⊂ Cκ, D ∈ V [G]
exists C ∈ V which refines D.

Proposition (A. Miller)
If P is a proper forcing with the Sacks property,
then P is Cohen-preserving.
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Let A ⊂ P (ω) be an independent system.
For h ∈ CA let Ah =

⋂{
Ah(A) p A ∈ dom h

}
.

For X ⊆ ω say that h ∈ CA reaps X if eitherAh ⊂∗ X orAh ∩ X =∗ ∅.
If Ah ⊂∗ X , say that h hits X .
The independent system A is maximal i� { h p h reaps X } is
nonempty for each X ⊆ ω.

Definition (Goldstern–Shelah)
An independent system A is dense if the set { h p h reaps X } is dense
in CA for each X ⊆ ω.

Observation
A dense independent system is maximal.

Proposition (Goldstern–Shelah)
For each maximal independent system A there exists h ∈ CA such that
A�Ah is a dense independent system.
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To show that A is preserved as a maximal independent system in V [G]
it is su�icient to show that CA generates P (ω) \ (FA)V in V [G].
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the filter (FA)V [G] is generated by (FA)V .

To show that A is preserved as a maximal independent system in V [G]
it is su�icient to show that CA generates P (ω) \ (FA)V in V [G].
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Definition
Let B be a free sequence, A be a dense independent system. We say B
is associated with A if B is maximal, and B generates FA.

Proposition
Let B be a free sequence associated with A, P be a Cohen-preserving
forcing, preserving A as a dense independent system. Then in V [G] the
sequence B remains to be associated with A (i.e. maximal).

Proposition
Assume CH. There exists a selective dense independent system A
and a free sequence B associated with A.

Theorem (Shelah)
Let U be a non-principal ultrafilter. There exists a proper, Sacks
property (i.e. Cohen-preserving) forcing PU which destroys U (as an
ultrafilter base) and preserves selective dense independent systems.
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